摘要:
A method (400) and system (100) for a wireless multi-hopping communication system is provided, wherein the system (100) includes an access point (102), a source node (CR1), and a plurality of nodes. The source node (CR1) is in communication with the access point (102), and configured to transmit a signal on at least one of a plurality of frequencies. The plurality of nodes are in communication with the access point (102) and the source node (CR1), and configured to transmit a signal on at least one of the plurality of frequencies, wherein the source node (CR1) and the plurality of nodes are adapted to determine a routing path utilizing at least one intermediate node (CR2) of the plurality of nodes and a transmitting frequency of the plurality of frequencies while reducing interference to a primary user of the transmitting frequency.
摘要:
A method (300, 400) and a communication system (104, 106, 200) for dynamic RF spectrum allocation among a plurality of RF transmitters (108, 110, 112). A message can be received from a first communication system. The message can include a request (130) for available RF spectrum over which to transmit RF signals. The message can indicate a geographic location of a first non-incumbent transmitter (112) associated with the first communication system. Further, for the RF spectrum, a maximum power level can be determined at which the first non-incumbent transmitter may transmit without exceeding a threshold level of interference at least one focal point (134). A RF spectrum list (138) identifying at least the RF spectrum and the determined maximum power level can be communicated to the first communication system.
摘要:
A combination of subscriber clustering and link interleaving provides a cognitive radio system (CR) 100 with opportunities to sense an incumbent system's spectrum on secondary basis. The CR system (100) uses clustering to identify out-of-band channels. The CR system (100) uses link interleaving during a second mode of operation to sense and detect any incumbent (120) on in-band channels. A list of out-band channels are sensed by clusters (0, 1, 2, 3) sequentially to generate a ranked list of potential channels for future use by the CR system. These out-of-band channels can be used opportunistically in case of in-band incumbent detection.
摘要:
A monitoring device (141) can include a transceiver (202) to receive a radio signal, and a controller (203) communicatively coupled to the transceiver to detect an infringement on the radio signal and report the infringement to a database. One or more policies within the database can be updated to mitigate the infringement. The monitoring device can also detect whether a cognitive radio (111) is generating interference on a primary spectrum used by an incumbent device (151). Other embodiments are disclosed.
摘要:
A wireless communication network is provided in which a plurality of radio devices achieve frequency diversity. By utilizing cognitive capability within the radio devices to iteratively select frequency sets, a lowest cardinality frequency set is generated and used to communicate amongst the plurality of radio devices. Each radio device can have different hardware, as the iterative selection of frequency set can take into account the different hardware capabilities of the radio devices.
摘要:
A method for controlling peak-to-average power ratio prior to amplification by a power amplifier is provided. The peak sample of a signal is predicted, window length is adjusted based on the peak width around the peak sample or subcarriers used to transmit the signal, and the window is subsequently used to clip the samples. A peak suppression window may be applied prior to predicting the peak sample when a set number of samples exceed a predetermined threshold. Window clipping may be deactivated if interference and throughput of the power amplifier is detrimentally affected. A pulse shaping filter may be optimized based on the window clipping to control transmitted signal characteristics. Various thresholds used in the prediction may be initially based on system design and power amplifier linearity and then dynamically adjusted based on an estimation of active subcarriers or of interferers present in the communication system.
摘要:
A channel scanning technique and apparatus provides audio hole suppression in two-way radio communications. Upon detecting the absence of a carrier signal on a priority channel during a priority scan mode of operation, a training waveform is constructed upon returning to the home-channel. The training waveform is applied to audio shaping filters within an audio lineup to suppress transients and minimize or eliminate the occurrence of audio pops at a speaker output thereby reducing the audio hole.
摘要:
Efficient frequency spectrum sharing between at least one incumbent communication system(s) (102, 104) and at least one cognitive radio (CR) system (106, 108) is provided. The CR unit includes OFDM detection (216) for detecting the presence of OFDM signals which indicate the presence of an incumbent communication system within the shared spectrum. The CR system (106) updates channel occupancy information in response to the detected OFDM signals so as not to interfere with the incumbent communication systems (102, 104).
摘要:
The application discloses a method and apparatus for dynamic spectrum allocation to a secondary communication system seeking to operate within the spectrum of a regulated primary communication system. The method includes clustering a plurality of secondary devices based on an operating frequency utilized by each of the secondary devices. The method then includes assigning sensing opportunities to the plurality of clustered secondary devices. The method then includes, receiving sensing information from each of the clustered secondary devices. The sensing information indicates at least one of an occupied channel frequency and an unoccupied channel frequency in the spectrum. The method further includes determining at least one spectrum opportunity, in the spectrum, that is unoccupied by each of a plurality of primary devices based on the received sensing information, and allocating the at least one spectrum opportunity to at least one of the secondary devices.
摘要:
A technique for a secondary communication system to utilize spectrum designated to another (or primary) communication system is provided. By ranking a plurality of secondary base stations based on base station transmit power, calculated required transmit power and path loss, a set of criteria is developed for selecting a highest ranked secondary base station for operation within a primary's spectrum. The ranking may be adapted based on mobility of the secondary's subscriber; and as such the secondary system communicates within the primary's spectrum using the adaptively ranked base stations. Channel selection may also be ranked. The technique and apparatus allows a cognitive radio (CR) network to operate within an incumbent network's spectrum.