Abstract:
A PFC-PWM controller with a power saving means is disclosed. A built-in current synthesizer generates a bias current in response to feedback voltages sampled from the PWM circuit and the PFC circuit. The bias current modulates the oscillation frequency to further reduce the switching frequencies of the PWM signal and the PFC signal under light-load and zero-load conditions. Thus, power consumption is greatly reduced. The PFC and the PWM switching signals interleave each other, so that power can be transferred more smoothly from the PFC circuit to the PWM circuit. The saturation of the switching components can be avoided by limiting the maximum on-time of the PWM signal. Further, an external resistor is used to start up the PFC-PWM controller and provide an AC template signal for PFC control.
Abstract:
The present invention provides a driving circuit for driving a plasma display unit. The plasma display unit can be repeatedly charged for sustaining a display of an image signal. The driving circuit comprises two driving circuits, a control circuit, and a power supply. Each of the driving circuits comprises an inductor, two switches, and two diodes. Each of the switches comprises a transistor with a parasitic diode existed between a drain and source of the transistor. The plasma display unit is electrically connected between the two inductors. The control circuit is used for controlling the on and off states of the switches so that the power supply can repeatedly charge the plasma display unit through the two driving circuits.
Abstract:
A trench scribing apparatus and a trench scribing method adapted to scribe a trench on a substrate are provided. The apparatus includes a platen, a guide rod structure, a supporting carrier and a pin device. The guide rod structure is disposed above the platen. The supporting carrier is fixed on the guide rod structure, and the substrate is disposed on the supporting carrier. The pin device is disposed above the supporting carrier and includes a pin holder and a plurality of pins fastened on the pin holder, and the pins are arranged into at least one straight line.
Abstract:
The present invention relates to a digitally controlled switched-mode power supply, wherein a switched-mode power supply is provided with a control circuit, which comprises a signal amplifier unit able to receive digital signals or analog signals and a switching controller able to receive the signals. The switching controller uses the signals to produce a clock signal, after which the clock signal is output, whereupon the signal amplifier unit feeds a signal back to control the switching controller. The signal amplifier unit is provided with at least one amplifier element, and when the amplifier element receives a digital signal or analog signal, then the signal is transmitted to the switching controller. Accordingly, the control circuit achieves the effectiveness to not only receive and transmit digital signals, but also receive and transmit analog signals, and is thus provided with the advantage of enormous flexibility.
Abstract:
A power-mode controlled power converter is capable of supplying a constant output voltage and output current. A PWM controller generates a PWM signal in response to a voltage sampled from a transformer auxiliary winding. A programmable current-sink and a detection resistor compensate for a voltage drop of an output rectifier. A low-pass filter integrates a switching-current voltage to an average-current signal. An attenuator produces an input-voltage signal from a line-voltage input signal. The PWM controller multiplies the average-current signal with the input-voltage signal to generate a power-control signal. An error-amplifier compares the power-control signal with a power-reference voltage to generate a limit voltage. The limit voltage controls the power delivered from a primary-side circuit to a secondary-side circuit of the power-mode controlled power converter. Since the power-reference voltage varies in proportional to output voltage variations, a constant output current is therefore achieved.
Abstract:
The present invention demonstrates a power-mode controlled power converter for supplying a constant output voltage and a constant output current. A PWM controller of the power-mode controlled power converter generates a PWM signal in response to the voltage sampled from a transformer auxiliary winding. A programmable current-sink and a detection resistor compensate for the voltage drop of an output rectifier. A low-pass filter integrates a switching-current voltage to an average-current signal. An attenuator produces an input-voltage signal from a line-voltage input signal. The PWM controller multiplies the average-current signal with the input-voltage signal to generate a power-control signal. An error-amplifier compares the power-control signal with a power-reference voltage to generate a limit voltage. The limit voltage controls the power delivered from a primary-side circuit to a secondary-side circuit of the power-mode controlled power converter. Since the power-reference voltage varies in proportional to output voltage variations, a constant output current is therefore achieved.
Abstract:
The present invention provides a forward power converter with a synchronized rectifying controller. The synchronized rectifying controller has a detection input for detecting the voltage of a secondary winding of a transformer, and thereby accurately measuring the PWM signal. Based on this measurement, the synchronized rectifying controller generates control signals for two secondary-side rectifying MOSFETs. The present invention also introduces a delay time using a timing resistor coupled to the synchronized rectifying controller. This avoids cross-conduction from secondary-side MOSFETs. The present invention also includes an output current-sense mechanism to avoid reverse inductor currents under light-load conditions.
Abstract:
The present invention discloses a ZCS discontinuous mode PFC controller having a power saving modulator. The controller turns on through the feedback resistor and the parasitic diode of the controller, thus eliminating the need for a startup resistor. To achieve ZCS, the inductor current is released to zero, while the switching signal is off, before the next switching cycle starts. In order to decrease the switching frequency for light load conditions, an off-time delay is inserted right before the start of every switching cycle. The off-time delay is modulated to be the function of the feedback voltage and supply voltage. When the supply voltage is lower than the limit voltage, the off-time delay will decrease to inhibit the decrease of a switching frequency therefore prevents a low supply voltage. The switching frequency is decreased in accordance with the decrease of the load. Consequently, the switching losses and power consumption for light load and no load conditions are reduced.
Abstract:
The present invention discloses a driving method utilizing a driving circuit for driving a plasma display unit of a plasma display panel. The plasma display unit is repeatedly charged for sustaining an image signal. The driving circuit comprises an inductor connected in parallel to two ends of the plasma display unit, a power supply for charging the plasma display unit and the inductor, a first switch connected between the power supply and the first end of the plasma display unit, a second switch connected between the first end of the plasma display unit and ground, a third switch connected between the power supply and the second end of the plasma display unit, and a fourth switch connected between the second end of the plasma display unit and ground. Each of the first and second switches comprises a transistor having a parasitic diode between the drain and source of each transistor. Each switch is switched on only when the potential difference between the source and drain of the transistor is 0V.