摘要:
The present invention provides a driving method suitable for a plasma display. The plasma display includes multiple scan electrodes, multiple sustain electrodes and multiple address electrodes, for example. Successive frames are adapted to be displayed in repeating reset periods, address periods and sustain periods by applying driving signals to the scan electrodes, sustain electrodes and address electrodes. The driving method is characterized in that before inputting driving signals or when interrupting driving signals, a wall-charge removing signal is applied to the scan electrodes to remove/reduce the residual wall charges around the scan electrodes and the sustain electrodes. As a result, the possibility of the plasma display generating erroneously discharging with strong light at the restarting state can be effectively reduced.
摘要:
A driving apparatus for a light-emitting module is disclosed for generating a driving current to the light-emitting module according to a first input voltage and a second input voltage. The driving apparatus includes an amplifier, a first feedback circuit, and a second feedback circuit. The amplifier includes a first input node, a second input node and an output node. The first feedback circuit is used for generating a first feedback voltage inputted to the first input node according to an output voltage generated by the amplifier and the first input voltage. The second feedback circuit is used for generating a second feedback voltage inputted to the second input node according to the output voltage generated by the amplifier and the second input voltage.
摘要:
The present invention discloses a light emitting device power supply circuit, a light emitting device control circuit and an identifiable light emitting device circuit therefor, and an identification method thereof. The light emitting device control circuit includes an operation signal generation circuit and an identification circuit. The operation signal generation circuit determines whether the light emitting device control circuit operates in an identified mode or amiss mode according to an enable signal. In the identified mode, the light emitting device control circuit operates a power stage circuit to supply an output current to an identifiable light emitting device circuit. In the miss mode, an output voltage is maintained at a predetermined level. The identification circuit determines whether the light emitting device control circuit switches from the miss mode to the identified mode according to whether the output voltage meets a condition.
摘要:
The present invention discloses a light emitting device power supply circuit, a light emitting device control circuit and an identifiable light emitting device circuit therefor, and an identification method thereof. The light emitting device control circuit includes an operation signal generation circuit and an identification circuit. The operation signal generation circuit determines whether the light emitting device control circuit operates in an identified mode or amiss mode according to an enable signal. In the identified mode, the light emitting device control circuit operates a power stage circuit to supply an output current to an identifiable light emitting device circuit. In the miss mode, an output voltage is maintained at a predetermined level. The identification circuit determines whether the light emitting device control circuit switches from the miss mode to the identified mode according to whether the output voltage meets a condition.
摘要:
A method for recovering electric energy of a plasma display panel (PDP) by controlling two recovery units respectively connected to two sides of the PDP is introduced. The method includes forming series resonance loops within corresponding periods of a working period so that a capacitor of one of the two recovery units is charging twice, where it is charged once by the PDP and is also charged by another capacitor of the other one recovery unit; and controlling the two capacitors of the two recovery units to respectively charge the PDP within proper periods.
摘要:
A driving circuit for reducing noise of a ceramic capacitor, that is capable of driving a plasma display unit, is provided. The circuit includes a circuit board, a first switch, a second switch, a first capacitor set, a second capacitor set, and a control switch. The first switch is located on the circuit board and coupled to the second switch at a connecting point and the connecting point is connecting to the plasma display. The first capacitor set is coupled to the first switch and provides a first driving voltage to turn on the first switch. The second capacitor set is coupled to the second switch and provides a second driving voltage to turn on the second switch. The control switch can control the first switch and the second switch to carry out a charged and discharged operation. Moreover, the first and second capacitor sets both include an even number of ceramic capacitors subsequently those are located in reverse.
摘要:
A driving circuit of a plasma display panel (PDP) and a reset circuit thereof are disclosed. The above-mentioned driving circuit includes a reset circuit and a sustaining circuit. The reset circuit is connected to a display cell of the PDP and generates a reset signal for the above-mentioned display cell by means of an LC resonance. The sustaining circuit provides a sustaining voltage to the above-described display cell during the sustaining period of the display cell.
摘要:
The present invention provides a driving method suitable for a plasma display. The plasma display includes multiple scan electrodes, multiple sustain electrodes and multiple address electrodes, for example. Successive frames are adapted to be displayed in repeating reset periods, address periods and sustain periods by applying driving signals to the scan electrodes, sustain electrodes and address electrodes. The driving method is characterized in that before inputting driving signals or when interrupting driving signals, a wall-charge removing signal is applied to the scan electrodes to remove/reduce the residual wall charges around the scan electrodes and the sustain electrodes. As a result, the possibility of the plasma display generating erroneously discharging with strong light at the restarting state can be effectively reduced.
摘要:
A backlight module control system includes a power supply, a first backlight sub-module, a second backlight sub-module, a first transformer and a second transformer. The power supply is utilized for providing an operating power to the backlight module control system. A primary side and a secondary side of the first transformer are respectively coupled to the power supply and a first node of the first backlight sub-module. A primary side of the second transformer is coupled to the power supply, and a secondary side of the second transformer is coupled to the secondary side of the second transformer and a first node of the second backlight sub-module.
摘要:
A control signal is provided for turning on and turning off a lamp of a backlight source. For a first duration when the liquid crystal is rotating, adjust a frequency of the control signal to turn on and turn off the lamp of the backlight source consecutively or adjust a duty cycle of the control signal to turn off and then turn on the lamp of the backlight source. Thus, the backlight source has a luminance value for the first duration, and the control signal turns on the lamp of the backlight source for a second duration when the liquid crystal is in the steady state.