Abstract:
A method of treating living mammals including humans uses x-rays to disrupt DNA in malfunctioning cells such as cancerous or tumorous cells. A compound comprising a pre-selected element is administered to the mammal so that the compound associates with DNA. Then a localized region of cells which contains the malfunctioning cells is irradiated with line emission x-rays of an energy selected to cause emission of Auger electrons from the pre-selected element of the compound to disrupt DNA proximate to the irradiated pre-selected element. A kit useful for the treatment comprises an x-ray tube capable of emitting monochromatic line emission x-rays and a compound which associates with DNA and has an element which when irradiated emits said Auger electrons.
Abstract:
The invention relates to targets for an X-ray transmission tube (9); to a high efficiency, high excitation energy X-ray transmission tube; to combinations of the targets and high efficiency X-ray transmission tubes; and applications for utilizing such X-ray tubes. The target comprises two or more different thin foils (1) or at least two foils of the same material but different foil thickness on separate areas of a substantially planar substrate which is substantially transparent to X-rays. The target may also comprise at least two different foils (2, 3) layered sequentially one of the other, wherein X-rays are produced when an electron beam impinges the foil closest to the source fo the electron beam; wherein the energy of the electron beam is selectively changed to produce X-rays of a least one preselected energy characteristic of at least one of the foils.
Abstract:
A bandgap cascade cold cathode is obtained by constructing a wide bandgap Si/C superlattice thin film; depositing Si on the epitaxial silicon surface under CVD or ALD; depositing on the Si/C surface a first metal effective to form a metal-silicide electrode; etching away the silicon substrate to form an effectively smooth Si/C surface thereon; coating the effectively smooth Si/C surface with a thicker second effective metal to form a Schottky electrode surface on which a layer of about 200 nm Pt or Au is coated with edges masked off and welded onto a Cu electrode disc as a heat sink. During avalanche multiplication under reverse bias over the Si/C layer, the bandgap energy cascades from the Schottky electrode to the sink electrode and is used to balance against the work function of the sink electrode, thereby allowing the sink electrode to function as a cold cathode emitter at a reduced applied external field.
Abstract:
A mammography method images breast tissue with an end window X-ray transmission tube to detect the presence of neovascular micro-vessels as defining vascular structure associated with a suspect tumorous mass. A kit therefor has a high-efficiency, end window X-ray transmission tube and a supply of a contrast agent.
Abstract:
A method of treating living mammals including humans uses x-rays to disrupt DNA in malfunctioning cells such as cancerous or tumorous cells. A compound comprising a pre-selected element is administered to the mammal so that the compound associates with DNA. Then a localized region of cells which contains the malfunctioning cells is irradiated with line emission x-rays of an energy selected to cause emission of Auger electrons from the pre-selected element of the compound to disrupt DNA proximate to the irradiated pre-selected element. A kit useful for the treatment comprises an x-ray tube capable of emitting monochromatic line emission x-rays and a compound which associates with DNA and has an element which when irradiated emits said Auger electrons.
Abstract:
A method of investigating materials, especially biological specimens, utilizes a focused accelerated beam of electrons within an evacuated chamber, striking a metal foil within the chamber and exposing a specimen outside the evacuated chamber to x-rays generated in the metal foil. The apparatus of the invention functions as an x-ray microscope and in a preferred embodiment, as a scanning x-ray microscope.
Abstract:
An immunoassay method for measurement of the content of a target antigen or antibody in a fluid or tissue specimen comprises reacting the target with reagent antibody or antigen which forms a complex with the target and is carried by small tagged mobile units having tagging elements or compounds which are unassociated chemically with said reagent and are protected against reaction with the target and the biological and chemical environment of the assay. The tagged mobile units bearing formed complexes are measured by spectroscopic detection. Preferably the small, tagged mobile units, such as latex particles, are of a size smaller than 0.8 .mu.m. The tagged complexes which are formed may be measured by spectrophotometric detection or by mass spectrometry. Different target antigens or antibodies can be assayed simultaneously by employing different tagged mobile units, and the mobile units with the tagging elements can be recovered for disposal or for reuse.
Abstract:
An Auger microlithography process wherein a beam of substantially monochromatic X-rays is passed through a photomask to induce Auger electrons from a selected atomic element within a photosensitive layer which Auger electrons act on a material in that layer to cause a physicochemical change thereof and form a latent image. The X-rays used are selected to be substantially monochromatic such that the range of wave lengths falls largely or almost totally within the Auger window, as defined, determined by the particular electron shell of the atomic element to be activated to produce the Auger electrons.
Abstract:
Turbo-separative methods and apparatus for separation of mixtures of gaseous materials having different molecular weights, particularly gaseous isotope mixtures such as mixtures of UF.sub.6, in which differential sedimentation velocities of the components to be separated are established in a laminar boundary layer of the gas adjacent a hydraulically smooth, porous blade surface, and in which a predetermined amount of the boundary layer flow is conducted through the porous surface to stabilize the boundary layer and to provide a higher density gas fraction. The velocity of the gas conducted through the porous blade surface should not exceed the sedimentation velocity of the gas species to be separated.