摘要:
A gas turbine engine including: an ambient-air cooling circuit (10) having a cooling channel (26) disposed in a turbine blade (22) and in fluid communication with a source (12) of ambient air: and an pre-swirler (18), the pre-swirler having: an inner shroud (38); an outer shroud (56); and a plurality of guide vanes (42), each spanning from the inner shroud to the outer shroud. Circumferentially adjacent guide vanes (46, 48) define respective nozzles (44) there between. Forces created by a rotation of the turbine blade motivate ambient air through the cooling circuit. The pre-swirler is configured to impart swirl to ambient air drawn through the nozzles and to direct the swirled ambient air toward a base of the turbine blade. The end walls (50, 54) of the pre-swirler may be contoured.
摘要:
An air injection system for use in a gas turbine engine includes at least one outlet port through which air is extracted from the engine only during less than full load operation, at least one rotor cooling pipe, which is used to inject the air extracted from the outlet port(s) into a rotor chamber, a piping system that provides fluid communication between the one outlet port(s) and the rotor cooling pipe(s), a blower system for extracting air from the engine through the outlet port(s) and for conveying the extracted air through the piping system and the rotor cooling pipe(s) into the rotor chamber, and a valve system. The valve system is closed during full load engine operation to prevent air from passing through the piping system, and open during less than full load engine operation to allow air to pass through the piping system.
摘要:
In a gas turbine engine, a flow directing member includes a platform supported on a rotor, a radially facing endwall, at least one axial surface extending radially inwardly from a junction with the endwall, an airfoil extending radially outwardly from the endwall, and a fluid flow directing feature. The fluid flow directing feature includes a groove extending axially into the axial surface and has radially inner and outer groove ends. The outer groove end defines an axially extending notch in the junction between the axial surface and the endwall and forms an opening in the endwall for directing a cooling fluid to the endwall. The groove further includes a first groove wall extending from the inner groove end to the outer groove end, and a second groove wall opposed from the first groove wall and extending from the inner groove end to the outer groove end.
摘要:
In a gas turbine engine, a flow directing member includes a platform supported on a rotor and includes a radially facing endwall and at least one axially facing axial surface extending radially inwardly from a junction with the endwall. The flow directing member further includes an airfoil extending radially outwardly from the endwall and a fluid flow directing feature. The fluid flow directing feature includes a groove extending axially into the axial surface. The groove has a radially inner groove end and a radially outer groove end, wherein the outer groove end defines an axially extending notch in the junction between the axial surface and the endwall and forms an opening in the endwall for directing a cooling fluid to the endwall.
摘要:
An investment casting method for a cast ceramic core (110), including an airfoil portion (116) shaped to define an inner surface (56) of an airfoil (52) of a vane segment (50) and an integral shell portion (122) having a backside-shaping surface (120) shaped to define a backside surface (68) of a shroud (62) of the vane segment. The backside-shaping surface has a higher elevation (132) and a lower elevation (134). The higher elevation is set apart from a nearest point (138) on the airfoil portion by the lower elevation. The airfoil portion and the shell portion are cast as a monolithic body during a single casting pour.
摘要:
A thermal management arrangement (110) in a gas turbine engine (60), including: a conduit-arrangement (62) providing fluid communication between a compressor section (156) and: a relatively thermally responsive portion (52) of a turbine vane carrier (10); and a relatively thermally unresponsive portion (48) of a first turbine vane carrier. The conduit-arrangement includes: a general cooling flow outlet (122) disposed proximate the relatively thermally responsive portion of the turbine vane carrier and configured to discharge a general cooling flow (124); and an impingement flow outlet (118) disposed proximate the relatively thermally unresponsive portion and configured to discharge an impingement flow (120). The thermal management arrangement is configured such that a flow rate of the impingement flow is effective to accelerate a thermal response of the relatively thermally unresponsive portion toward a thermal response of the relatively thermally responsive portion.
摘要:
A thermal management arrangement (110) in a gas turbine engine (60), including: a conduit-arrangement (62) providing fluid communication between a compressor section (156) and: a relatively thermally responsive portion (52) of a turbine vane carrier (10); and a relatively thermally unresponsive portion (48) of a first turbine vane carrier. The conduit-arrangement includes: a general cooling flow outlet (122) disposed proximate the relatively thermally responsive portion of the turbine vane carrier and configured to discharge a general cooling flow (124); and an impingement flow outlet (118) disposed proximate the relatively thermally unresponsive portion and configured to discharge an impingement flow (120). The thermal management arrangement is configured such that a flow rate of the impingement flow is effective to accelerate a thermal response of the relatively thermally unresponsive portion toward a thermal response of the relatively thermally responsive portion.
摘要:
A gas turbine engine, including: a plurality of blades (60) assembled into an annular row of blades and partly defining a hot gas path (26) and a cooling fluid path (24), wherein the cooling fluid path extends from a rotor cavity (22) to the hot gas path; an angel wing assembly (99) disposed on a side (74) of a base (76) of the row of blades; and pumping features (130) distributed about the angel wing assembly configured to impart, at a narrowest gap (42) of the cooling fluid path, motion to a flow of cooling fluid flowing there through. The plurality of pumping features, the angel wing assembly, and the base of the row of blades are effective to produce a helical motion to the flow of cooling fluid as it enters the hot gas path.
摘要:
In a gas turbine engine, a flow directing member includes a platform supported on a rotor and includes a radially facing endwall and at least one axially facing axial surface extending radially inwardly from a junction with the endwall. The flow directing member further includes an airfoil extending radially outwardly from the endwall and a fluid flow directing feature. The fluid flow directing feature includes a groove extending axially into the axial surface. The groove has a radially inner groove end and a radially outer groove end, wherein the outer groove end defines an axially extending notch in the junction between the axial surface and the endwall and forms an opening in the endwall for directing a cooling fluid to the endwall.
摘要:
A sealing system for a rotor assembly in a gas turbine engine is disclosed. The sealing system may include a seal formed from a side block and an upper seal that seals a gap between a radially outward extending first rotor supply channel in a rotor assembly terminating at an inlet of an axially extending second rotor supply channel that is in fluid communication with an internal blade cooling system of a turbine blade. The seal may include components that enhance the flow of cooling fluids over conventional configurations. In another embodiment, the sealing system may include an integrated sealing block configured to seal a gap between adjacent turbine blades at an intersection between the first and second rotor supply channels. The integrated sealing block may be formed from a radially inward extending leg and central body.