Abstract:
Please replace the originally filed abstract with the following amended abstract: An apparatus and method for precision bending a glass sheet that includes an oven for heating the glass sheet to a temperature near the softening temperature of the glass sheet. A stage for supporting the glass sheet. A pair of reference surfaces on the stage for precisely locating the glass sheet on the stage. At least one bending mechanism on a pair of arms inside the oven for bending an edge portion of the glass sheet. Inward facing first stop surfaces on the arms that contact reference surfaces on the stage for precisely locating the bending mechanism on the arms relative to the stage and the glass sheet.
Abstract:
Methods for manufacturing a glass ribbon include moving the glass ribbon along a travel path in a travel direction. Methods include directing a first ribbon portion of the glass ribbon to a winding apparatus to wind the first ribbon portion into a roll. Methods include detaching the first ribbon portion from a second ribbon portion of the glass ribbon. Methods include separating the second ribbon portion into a plurality of separated ribbon portions. Methods include directing a first set of the plurality of separated ribbon portions toward a disposal apparatus to crush the first set of the plurality of separated ribbon portions. Methods include forming a stack with a second set of the plurality of separated ribbon portions. A glass manufacturing apparatus is provided.
Abstract:
Various embodiments disclosed include a method of bending a glass laminate structure, the method can optionally include any one or any combination of: heating the glass laminate structure comprising at least a first ply substrate and a second ply substrate, wherein the first ply substrate has a first composition and a first thickness that differ from a second composition and a second thickness of the second ply substrate; engaging an edge portion of one or both of a first major surface and a second major surface of the glass laminate structure; and sequent to engaging the edge portion, pressing the glass laminate structure to bend the glass laminate structure and obtain a desired curvature of the glass laminate structure along one or both of the first major surface and the second major surface.
Abstract:
Embodiments of the disclosure relate to a method of controlling the flow of fluid, such as air, between a stack of glass sheets during a co-sagging process. In embodiments, this involves a particular method and certain mechanical means of applying force at or near the edges and/or corners of a stack of glass sheets during a co-sagging process. In other embodiments, this involves creating low pressure regions at or near the edges and/or corners during the co-sagging process. In particular, controlling the flow of fluid between glass sheets is particularly suitable for preventing shape mismatch between two glass sheets having different thicknesses and/or compositions.
Abstract:
Various embodiments disclosed relate to a method for bending a glass substrate. The method includes actuating at least one heat shield to a first position at least partially covering an edge portion of a first major surface of the glass substrate. The method further includes heating the glass substrate. The method further includes actuating the at least one heat shield to a second position at least partially uncovering the edge portion of the glass substrate.
Abstract:
Disclosed are apparatuses for shaping a glass structure, the apparatuses having a plurality of rib members, each rib member comprising at least one void and at least one shaping edge; and at least one support member. The apparatuses can further comprise a shaping member and/or a guide member and/or a shaping groove. Also disclosed herein are methods for shaping a glass structure, the methods comprising positioning the glass structure on a shaping apparatus and heating the glass structure to shape the glass structure.
Abstract:
A method for bending a sheet of material into a shaped article includes providing the sheet of material. A reformable area and a non-reformable area of the sheet of material are heated to a first temperature range corresponding to a first viscosity range. The reformable area of the sheet of material is subsequently heated to a second temperature range corresponding to a second viscosity range. The reformable area of the sheet of material is reformed into a selected shape by at least one of sagging the reformable area of the sheet of material and applying a force to the sheet of material outside of or near a boundary of the reformable area.
Abstract:
A method for bending a sheet of material into a shaped article includes providing the sheet of material. A reformable area and a non-reformable area of the sheet of material are heated to a first temperature range corresponding to a first viscosity range. The reformable area of the sheet of material is subsequently heated to a second temperature range corresponding to a second viscosity range. The reformable area of the sheet of material is reformed into a selected shape by at least one of sagging the reformable area of the sheet of material and applying a force to the sheet of material outside of or near a boundary of the reformable area.
Abstract:
A mechanism for bending glass comprising a seating device and a mold configured to bend a substrate to a desired shape, the substrate adaptable to be provided on the seating device. A position of the mold in relation to the seating device can be controlled by a programmable counterweight system.
Abstract:
An apparatus and method for precision bending a glass sheet that includes an oven for heating the glass sheet to a temperature near the softening temperature of the glass sheet. A stage for supporting the glass sheet. A pair of reference surfaces on the stage for precisely locating the glass sheet on the stage. At least one bending mechanism on a pair of arms inside the oven for bending an edge portion of the glass sheet. Inward facing first stop surfaces on the arms that contact reference surfaces on the stage for precisely locating the bending mechanism on the arms relative to the stage and the glass sheet.