Abstract:
A glass sleeve assembly for a portable electronic device may comprise a glass sleeve extending longitudinally from a first opening defined by a first rim to a second opening defined by a second rim. The glass sleeve may have an internal surface. A first end cap may be positioned adjacent to the first opening and may have at least a portion extending longitudinally beyond the first rim. A second end cap may be positioned adjacent to the second opening and may have at least a portion extending longitudinally beyond the second rim. A frame may comprise first and second ends and a central portion between the first and second ends. The central portion may be located within the glass sleeve. The ends of the frame may be connected to the end caps. Shock absorbing interlayers may be mounted to the end caps and the glass sleeve.
Abstract:
In embodiments, a conveyor apparatus can include a conveyor ribbon having a length, a width, a thickness less than the width, and a plurality of receiving apertures located along the length and extending through the thickness of the conveyor ribbon. The plurality of receiving apertures are dimensioned to receive and hold a plurality of glass articles. A conveyor drive and guidance system directs the conveyor ribbon along a predefined conveyor path. The predefined conveyor path can include an immersion section and a drain section. The immersion section can be oriented to direct the conveyor ribbon into and out of an immersion station and the conveyor ribbon is rotated about a horizontal axis in the drain section after being directed out of the immersion station.
Abstract:
Disclosed are methods for coating or decorating a surface of a glass sleeve. The methods include depositing a metal layer onto a surface of the glass sleeve by an electroless plating method. Also disclosed are glass sleeves which are coated or decorated on an internal surface, and electronic devices comprising the coated glass sleeves.
Abstract:
A method of reforming a glass sleeve and a shaping tool is disclosed. The method for reforming a glass sleeve may be carried out by providing a tube made of glass. The tube may have a longitudinal axis and an inner curved surface enclosing a space. The tube may be heated to a temperature within the soften range of the glass. A shaping tool may be introduced. The shaping tool may have at least two opposing fingers into the enclosed space. The at least two opposing fingers may extend generally radially. The at least two opposing fingers may be moved against the inner curved surface along a radial axis to reform the tube to form the first portion.
Abstract:
A method for forming a plugged honeycomb article includes feeding a ceramic precursor material through an extrusion die, the extrusion die having a plurality of pins, a plurality of cavities bounded by adjacent pins, and alternating end-faces of the plurality of pins include extensions extending from an outlet of the extrusion die in an extrusion direction. The method further includes extruding the ceramic precursor material through the extrusion die to form a web structure comprising a plurality of cell walls and channels bounded by adjacent cell walls, supporting the web structure that has been extruded through the extrusion die, and providing movement between the extrusion die and the web structure in at least one direction substantially orthogonal to the extrusion direction while the extensions are positioned in at least a portion of the channels.
Abstract:
An apparatus for making a profiled tubing includes a mandrel adapted for positioning proximate a tubing. The mandrel has a nozzle section with a select cross-sectional profile that will define a final cross-sectional profile of the tubing. The nozzle section has a feed chamber for receiving a gas and a porous circumferential surface through which the gas can be discharged to an exterior of the mandrel. The gas when discharged to the exterior of the mandrel forms a film of pressurized gas between the porous circumferential surface and the tubing. A method of forming a profiled tubing using the apparatus is disclosed. A sleeve formed from the profiled tubing is also disclosed.
Abstract:
Disclosed are apparatuses for shaping a glass structure, the apparatuses having a plurality of rib members, each rib member comprising at least one void and at least one shaping edge; and at least one support member. The apparatuses can further comprise a shaping member and/or a guide member and/or a shaping groove. Also disclosed herein are methods for shaping a glass structure, the methods comprising positioning the glass structure on a shaping apparatus and heating the glass structure to shape the glass structure.
Abstract:
A 3-D glass enclosure comprises a generally planar glass base member, an encircling glass side wall member connected to the base member, and a generally planar glass cover member connected to the side wall member to form a unitary glass enclosure, the base, sidewall and cover members being made by reforming softened glass sheet preforms and subjecting the reformed members to ion-exchange strengthening, thus providing strong transparent enclosures for electronic devices such as tablet computers, cellphones, media players and televisions.
Abstract:
A magnetic polisher and a method of use magnetic polisher for polishing a glass sleeve are described. The magnetic polisher may comprise at least one rotatable driver and at least one rotatable polishing tool. The at least one rotatable driver may comprise driver magnetic material. The at least one rotatable polishing tool may comprise tool magnetic material and a first polishing surface. At least one of the driver magnetic material and the tool magnetic material may be a magnet. The driver and polishing tool may be configured to be magnetically coupled with a workpiece. The workpiece may have at least a first internal surface to be polished. The workpiece may be located between the first polishing surface and the driver. The rotation of the driver about an axis may cause rotation of the first polishing surface against the first internal surface.
Abstract:
A reformable area and a non-reformable area of a sheet of glass material are heated to a first temperature corresponding to a first viscosity. The reformable area is subsequently locally heated to a second temperature corresponding to a second viscosity, where the second viscosity is lower than the first viscosity. A bend is formed in the reformable area during the local heating of the reformable area by contacting a first pusher with the non-reformable area and translating the first pusher along a linear path to apply a pushing force to the non-reformable area that results in the bend in the reformable area or by contacting a second pusher with an edge area of the reformable area and rotating the pusher along a circular path to apply a pushing force to the edge area of the reformable area that results in the bend in the reformable area.