摘要:
A core-shell structured silicate luminescent material and a preparation method thereof. The molecular formula of the luminescent material is: MLn1-xSiO4:xRE@SiO2; where @ represents a coating, where M is one or two elements among Li, Na, and K, where Ln is one or two elements among Y, Sc, Lu and La, where the value of x is 0
摘要:
The present invention relates to a titanate luminescent material and preparation method thereof. The titanate luminescent material has the following chemical formula: Ca1−xTi1−yO3:Prx,Ry@TiO2@Mz, wherein @ represents coating, Mz is a core, TiO2 is an intermediate shell; Ca1−xTi1−yO3:Prx,Ry, is an outer shell, Prx and Ry are doped in Ca1−xTi1−yO3; R is at least one of Al and Ga, and M is at least one of Ag, Au, Pt Pd and Cu metallic nanoparticles; 0
摘要:
A stannate luminescent material, having the general molecular formula of Ln2−xEuxSn2O7@SnO2@My, wherein Ln is selected from one of Gd, Y and La; M is selected from at least one of Ag, Au, Pt, Pd and Cu metallic nanoparticles; 0
摘要:
Disclosed is a metal nanoparticle-coating silicate luminescent material, which has a molecular formula of Li2Ca1-xSiO4:Tbx@My; where @ represents a coating, M is at least one among Ag, Au, Pt, Pd, and Cu nanoparticles, where 0
摘要:
The present invention relates to a method for making a polymer wherein during ring opening polymerisation is incorporated into the polymer chain at least one cyclic (alkyl) carbonate monomer having the formula (1) wherein Y is optional and represents the residue of a sulfhydryl reacted group, X represents a functional group reactive with a sulfhydryl group, L=—[CH2]n with n=0-10, or L=—[CH2]p-S—S—[CH2]q with p and q are 0-5 or L=-[PEG]- with PEG is a group that comprises a —[CH2CH2O]m-group with m=1-200, and R2 is hydrogen, methyl or ethyl. Optionally a cyclic (alkyl) acryloyl carbonate, or other additional monomer A may be used as comonomer. The polymer may be formed into a polymer article, such as a polymer film, such as a coating and modified and/or cross linked, to a polymer or polymer article obtainable, and to a biodevice, their use, and to the cyclic (alkyl)carbonates.
摘要:
The invention belongs to the field of luminescent materials. Disclosed are luminescent materials doped with metal nano particles and preparation methods therefor. The luminescent materials doped with metal nano particles are represented by the chemical formula: A5-x(PO4)2SiO4:xRE@My, wherein @ is for coating, M is inner core, M is one metal nano particle selected from Ag, Au, Pt, Pd and Cu; RE is one or two ions selected from Eu, Gd, Tb, Tm, Sm, Ce, Dy and Mn; A is one or two elements selected from Ca, Sr, Ba, Mg, Li, Na and K; x is stoichiometric coefficient, 0
摘要:
The invention belongs to the field of luminescent materials. Disclosed are silicate luminescent materials doped with metal nano particles and preparation methods there for. The silicate luminescent materials doped with metal nano particles are represented by the chemical formula:MLn1-xSiO4:xRE,yA; wherein M is one or two elements selected from Li, Na and K; Ln is one or two elements selected from Y, Sc, La and Lu; A is a metal nano particle selected from Ag, Au, Pt, Pd and Cu; RE is one or two ions selected from Eu, Gd, Tb, Tm, Sm, Ce and Dy; 0
摘要:
The present invention relates to a method for making a polymer wherein during ring opening polymerisation is incorporated into the polymer chain at least one cyclic (alkyl) carbonate monomer having the formula (1) wherein Y is optional and represents the residue of a sulfhydryl reacted group, X represents a functional group reactive with a sulfhydryl group, L=—[CH2]n with n=0-10, or L=−[CH2]p-S—S—[CH2]q with p and q are 0-5 or L=-[PEG]- with PEG is a group that comprises a —[CH2CH2O]m-group with m=1-200, and R2 is hydrogen, methyl or ethyl. Optionally a cyclic (alkyl) acryloyl carbonate, or other additional monomer A may be used as comonomer. The polymer may be formed into a polymer article, such as a polymer film, such as a coating and modified and/or cross linked, to a polymer or polymer article obtainable, and to a biodevice, their use, and to the cyclic (alkyl)carbonates.
摘要:
Borate luminous material is provided, wherein, comprises the compound of following structural formula: M2(Re1-xLnx)2B2O7, wherein x is in a range of 0
摘要:
Silicate luminescent material and preparation method thereof are provided. The structural formula of the silicate luminescent material is Zn2-y(Si1-xMx)O4:Mny, wherein M is metal element and its oxide is conductive, x is in a range of 0.001 to 0.15, and y is in a range of 0.001 to 0.05. For integrated with conductive metal oxide component, the silicate luminescent material could take advantage of its conductive properties, and the silicate luminescent material could improve the luminescence properties under cathode ray significantly comparing with that of the luminescent material has not been integrated with conductive component. Accordingly, the luminescence efficiency of the above silicate luminescent material is increased.