Abstract:
A semi-open staggered vane impeller for use in an automotive fuel pump. Each vane has a cover-side vane tooth and a body-side vane tooth extending from a central vane groove. Each vane is coupled to the next adjacent vane by a rib that runs substantially parallel to the vane groove. In addition, each vane has a phase difference between its cover-side vane tooth and body-side vane tooth that is a function of the length of the vane groove.
Abstract:
The present invention provides a fuel delivery system for a saddle fuel tank wherein a fuel pump and a jet pump are positioned within an active side of the tank. The jet pump is directly driven by the fuel pump to draw the fuel from a passive side of the tank to the active side of the tank.
Abstract:
A regenerative fuel pump comprising a housing, a pump cover having a first flow channel formed therein, a pump body having a second flow channel formed therein whereby the first flow channel and the second flow channel define a pumping chamber, and an impeller mounted between the pump cover and pump body and including a plurality of vanes spaced circumferentially about the impeller and defining a plurality of vane grooves. The vanes are spaced un-evenly in a non-repeating pattern about the impeller. The first and second flow channels each include an inlet end, an outlet end, and a stripper area defined as the area between the inlet end and the outlet end extending from the inlet end away from the flow channel. Each of the stripper areas including a plurality of grooves formed therein adapted to dampen pressure pulsations within the pumping chamber.
Abstract:
A fuel sender assembly comprises an electric fuel pump held in a mounting plate which is, in turn, mounted in a fuel tank, such as an automotive fuel tank. The mounting plate includes a chamber wall that defines a pump chamber having an inboard end and an outboard end. The electric fuel pump is received in the pump chamber such that an inlet end, which includes a fuel inlet, is disposed within the fuel tank adjacent the inboard end of the pump chamber. The outlet end of the fuel pump includes the electrical terminals and is disposed adjacent the outboard end of the pump chamber so that the electrical terminals are accessible outside the fuel pump for connection to an external power source. A hermetic seal is formed between the fuel pump and the chamber wall to prevent vapors from escaping through the pump chamber. The fuel sender assembly permits electrical connections to be made to the fuel pump without requiring wires within the fuel tank.
Abstract:
An electric-operated fuel pump has a vaned impeller that is disposed within a pumping chamber for rotation about an axis. The pumping chamber has a main channel extending arcuately about the axis to one axial side of the impeller. The main channel has a radially outer margin that opens along at least a portion of the channel's arcuate extent to an adjoining contaminant collection channel which extends arcuately about the axis and which is effective, as the pumping element rotates, to collect certain fluid-entrained particulates expelled from the main channel and to convey such collected particulates toward the pump outlet. A sump is disposed at the end of the contaminant collection channel proximate the outlet. Several grooves in the seal surface between inlet and outlet, which is called “strip area.” The grooves are extended radially outward, the angles match the impeller vane angles and these grooves prevent leakage of the contaminations.
Abstract:
A vehicle regenerative-type fuel pump which reduces the possible accumulation and effects of contamination relative to impellers with outer ring members. The outer ring members have non-uniform configurations (slanted, curved, grooved, etc.) which reduce the affects of contamination which can cause wear and roughing of the outer surface resulting in higher torque and reduced pump efficiencies.
Abstract:
A vehicle regenerative-type fuel pump which reduces the possible accumulation and effects of contamination relative to impellers with outer ring members. The impellers for the pump have outer ring members with non-uniform configurations (slanted, curved, grooved, etc.) which reduce the affects of contamination which can cause wear and roughing of the outer surface resulting in higher torque and reduced pump efficiencies.
Abstract:
A non-corrosive fuel pump housing (36) that can be used in high-pressure applications and with aggressive or flex fuels. The fuel pump housing (36) is comprised of a pump cover (40) and pump body (38). The pump cover (40) and pump body (38) each have a narrow seal ring (101, 104), a cavity circle (103, 106), and a tapered seal ring (102, 105) extending radially from the narrow seal ring (101, 104) to the cavity circle (103, 106) that reduce friction between the impeller (34) and pump housing (36) and limit leakage between the impeller (34) and the pump housing (36). The pump housing (36) is composed of a thermosetting or thermoplastic material; as such material and manufacturing costs are less than traditional anodized aluminum pump housings.
Abstract:
A pump (10) has a housing containing an internal pumping chamber (30). A fluid inlet (32) and a fluid outlet (34) are spaced arcuately apart about an axis (12), and an impeller (20) within the housing rotates about the axis to pump fluid from the inlet to the outlet. The impeller has mutually parallel opposite faces (40, 42) circumferentially bounded by a vaned periphery (38). The impeller has a pattern of through-holes (46) extending between its faces and the one face that confronts a wall surface of the housing to which the inlet is proximate has, in association with each through-hole, a groove (44) that adjoins and tails circumferentially away from the respective through-hole in a sense opposite the sense in which the impeller rotates to pump fluid from the inlet to the outlet. The groove inclines and provides a reaction surface against which fluid exerts a lifting force to aid in force-balancing the impeller.
Abstract:
A fuel pump includes a housing, and a motor. An impeller has first and second impeller flow channels having a plurality of vanes positioned therein. The impeller defines a flow passageway extending through the impeller. A cover is attached to the housing and defines a cover flow channel. The cover flow channel receives fuel from an inlet formed in the cover. A first portion of the cover flow channel is aligned with the first impeller flow channel and a second portion of the cover flow channel is aligned with the second impeller flow channel. The cover flow channel extends around the cover more than 360 degrees. A body is positioned within the housing and defines an impeller chamber, sized to receive the impeller, and an outlet passageway is positioned to fluidically connect to the flow passageway of the impeller to receive higher pressure fuel for delivery to the engine.