Abstract:
A tire sensor system includes a first sensor and a second sensor spaced apart from the first sensor. The first and second sensors are mounted to a tire. A processor receives input signals from the first and second sensors, and is programmed to determine the length of a contact patch of the tire in response to the input signals.
Abstract:
The invention is related to capacitive sensing and detection systems and methods. In one embodiment, a capacitive sensor system comprises a first electrode and a second electrode forming a first capacitive sensor mounted to a vehicle and configured to create a first electric field directed outward from the vehicle, and a control unit coupled to the first and second electrodes and configured to measure a change in the first electric field. In another embodiment, a method comprises capacitively sensing an object relative to a vehicle and communicating information related to the object. In yet another embodiment, a method comprises configuring a capacitive sensor to sense an object relative to a vehicle, and providing a path to communicate information from the capacitive sensor.
Abstract:
In one embodiment, a sensor for circuit testing has a first terminal and a second terminal. The first terminal is configured to be coupled to a first node of a first circuit via a first capacitor, and the second terminal is configured to be coupled to a second node of the first circuit. The sensor also has at least one transmitter and at least one receiver that measures a first transmission factor between the first terminal and the second terminal. The sensor determines that the first circuit is in a first state if the first transmission factor is above a first threshold, and determines that the first circuit is in a second state if the first transmission factor is below the first threshold.
Abstract:
A measuring device for determining a measured quantity having an oscillatory structure where an oscillation signal is detectable. The measuring device further includes a device for exciting the oscillatory structure by an excitation frequency to result in an oscillation of an oscillation frequency. The measuring device further has a device for processing the oscillation signal by a frequency depending on the oscillation frequency and the excitation frequency. Furthermore, the measuring device includes an evaluator for determining the measured quantity based on the oscillation signal processed.
Abstract:
A semiconductor device includes a first sensor element in a first branch of a Wheatstone bridge and a second sensor element in a second branch of the Wheatstone bridge. The semiconductor device includes a first reference element in the first branch and a second reference element in the second branch. The semiconductor device includes a circuit configured to switch the first sensor element to the second branch and the second sensor element to the first branch.
Abstract:
An ESD protective circuit having a contact terminal, a first supply voltage terminal for a first supply potential, a second supply voltage terminal for a second supply potential, a transistor chain having several transistors, wherein drain terminals of the transistors are connected to one of the supply voltage terminals, wherein the control terminal of a first transistor of the transistor chain is connected to the other supply voltage terminal, wherein the source terminal of the last transistor of the transistor chain is connected to the contact terminal, and a current source which is connected to a source terminal of at least one of the transistors of the transistor chain and is able to provide a current which compensates, up to a maximum tolerable voltage deviation from the first or second supply potential at the contact terminal, a current flowing into or from the source terminal.
Abstract:
A sensor system includes a first magnetoresisitive sensor resistor including a pinned magnetic layer having a fixed orientation in a reference magnetization direction. The first sensor resistor is configured such that its resistance changes in response to an angle defined between the reference magnetization direction and a magnetic field. A plurality of second magnetoresisitive sensor resistors are configured to provide a differential signal. Each of the second sensor resistors includes a pinned magnetic layer having a fixed orientation in the reference magnetization direction. Another sensor system includes a first magnetoresisitive sensor resistor having a length axis oriented by 90°+an angle Φ, where Φ
Abstract:
A system including a first electrode embedded in tread of a tire. The first electrode is configured for electro-statically indicating movement of the tread.
Abstract:
A method of magnetizing a permanently magnetizable element associated with a magnetic field sensor structure includes generating a test magnetic field penetrating the magnetic field sensor structure and the permanently magnetizable element, detecting the magnetic field and providing a test signal based on a magnetic field through the magnetic field sensor structure, aligning the test magnetic field and the magnetic field sensor structure with the permanently magnetizable element to each other, until the test signal reaches a set value corresponding to a predetermined magnetized field distribution with respect to the magnetic field sensor structure, and generating a magnetizing field for permanently magnetizing the element to be permanently magnetized, wherein the magnetizing field corresponds to the predetermined magnetic field distribution within a tolerance range.
Abstract:
An apparatus for reading out a time-continuous sensor output signal of a sensor, modulated with a fundamental frequency, has a loop filter, a sample-quantizer and a feedback circuit. The loop filter, filters the sensor output signal to provide a filtered sensor output signal in which frequency proportions present in a frequency range Δf with respect to the fundamental frequency f0 are amplified. The sample-quantizer samples and quantizes the filtered sensor output signal to provide a time-discrete, quantized sensor output signal. The feedback circuit feeds a feedback signal based on the time-discrete, quantizes sensor output signal back to the loop filter and provides a readout signal, wherein the readout signal corresponds to the time-discrete, quantized sensor output signal or the time-discrete, quantized sensor output signal demodulated with respect to the fundamental frequency f0.