Abstract:
In one embodiment, a sensor for circuit testing has a first terminal and a second terminal. The first terminal is configured to be coupled to a first node of a first circuit via a first capacitor, and the second terminal is configured to be coupled to a second node of the first circuit. The sensor also has at least one transmitter and at least one receiver that measures a first transmission factor between the first terminal and the second terminal. The sensor determines that the first circuit is in a first state if the first transmission factor is above a first threshold, and determines that the first circuit is in a second state if the first transmission factor is below the first threshold.
Abstract:
In one embodiment, A system for communication has a receiver for receiving data from a passive transmitter capacitively coupled to the receiver. The receiver has a sensing element having a plurality of terminals configured to be capacitively coupled to the passive transmitter and DC isolated from the passive transmitter.
Abstract:
In one embodiment, a sensor for circuit testing has a first terminal and a second terminal. The first terminal is configured to be coupled to a first node of a first circuit via a first capacitor, and the second terminal is configured to be coupled to a second node of the first circuit. The sensor also has at least one transmitter and at least one receiver that measures a first transmission factor between the first terminal and the second terminal. The sensor determines that the first circuit is in a first state if the first transmission factor is above a first threshold, and determines that the first circuit is in a second state if the first transmission factor is below the first threshold.
Abstract:
In one embodiment, A system for communication has a receiver for receiving data from a passive transmitter capacitively coupled to the receiver. The receiver has a sensing element having a plurality of terminals configured to be capacitively coupled to the passive transmitter and DC isolated from the passive transmitter.
Abstract:
A system including an encoder, multiple sensing elements and control logic. The encoder has a pole pitch and is configured to rotate in a direction of rotation. The multiple sensing elements are situated along the direction of rotation and span at least half the length of the pole pitch. The control logic is configured to receive signals from the multiple sensing elements based on the encoder in a static position and obtain a switching point based on the signals.
Abstract:
An apparatus for determining a state parameter of an object to be monitored includes a means for providing a plurality of measurement values, wherein the measurement values include information relating to the state parameter of the object to be monitored, a comparison means for comparing the measurement value to a predeterminable comparison parameter, wherein the comparison means is formed to output a first comparison signal when a predeterminable number of measurement values falls below the comparison parameter within a measurement interval, or to output a second comparison signal when the predeterminable number of measurement values exceeds or reaches the comparison parameter, wherein the first comparison signal or the second comparison signal indicate the state parameter.
Abstract:
A sensing system and method. A coded wheel is configured to generate a signal that varies with rotation of the coded wheel. A sensor is configured to sense the varying signal and output a corresponding signal. A correction module is configured to receive the signal output by the sensor and compare the received signal to a stored signal and detect a defect in the coded wheel in response to the comparison.
Abstract:
A method for measuring an angular position of a rotating shaft, the method including providing a magnetic field which rotates with the shaft about an axis of rotation, positioning an integrated circuit having first and second magnetic sensing bridges within the magnetic field at a radially off-center position from the axis of rotation, the first and second magnetic sensing bridges respectively providing first and second signals representative of first and second magnetic field directions, the integrated circuit having a set of adjustment parameters for modifying attributes of the first and second signals, modifying values of the set of adjustment parameters until errors in the first and second signals are substantially minimized, and determining an angular position of the shaft based on the first and second signals.
Abstract:
A phase locked loop (PLL) circuit includes a first signal detector having a first input terminal configured to receive a varying first input signal, a second input terminal configured to receive a feedback signal that corresponds to the center of the input frequency, and an output terminal configured to provide an output signal corresponding to a phase difference between the first input and feedback signals. A delay estimator has an input terminal configured to receive the output signal from the first phase detector and in response thereto, output a phase difference estimation signal. A variable delay circuit has an input terminal configured to receive the phase difference estimation signal and in response thereto, phase shift the second input signal.
Abstract:
Embodiments relate to intelligent tire systems and methods. In an embodiment, a sensor module mounted in a tire includes a sensor configured to generate sensor data related to a condition of the tire; and a transceiver communicatively coupled to the sensor and configured to communicate with another in-tire sensor module and with a control unit external to the tire.