Abstract:
Provided is a solid electrolyte membrane including a porous frame including a metal or a polymer material, solid electrolyte particles covering both surfaces of the porous frame, and filling pores of the porous frame, and a binder between the solid electrolyte particles.
Abstract:
Provided is a method of preparing a coating composition for a separator of a secondary battery, and particularly a method including dispersing a first monomer and a surfactant in a solvent to form micelles, adding a first initiator to the solvent and performing first polymerization reaction to form a precursor solution including an emulsion-type binder, and adding a second monomer and a second initiator to the precursor solution and performing second polymerization reaction to form an aqueous binder solution including a solution-type binder, wherein the emulsion-type binder has a core shape, the solution-type binder has a shell shape wrapping the emulsion-type binder, and the emulsion-type binder and the solution-type binder are chemically bonded.
Abstract:
Provided is a method for preparing a multi-dopant, oxide-based solid electrolyte. The method comprising preparing a mixture including a lithium (Li) compound, a lanthanum (La) compound, and a metal compound, the metal compound including a first metal element represented by M, adding a first precursor including a second metal element and a second precursor including a third metal element to the mixture, and performing a crystallization operation to form a compound represented by LixLa3M2O12 from the mixture having the first precursor and the second precursor mixed therein, wherein the compound is doped with the second and third metal elements.
Abstract:
Provided is a method for preparing an oxide based solid electrolyte, the method comprising preparing a mixture including a lithium (Li) compound, a lanthanum (La) compound, and a metal compound, the metal compound including a first metal element represented by M, adding a first precursor including a second metal element and a second precursor including a third metal element to the mixture, and performing a crystallization operation to form a compound represented by LixLa3M2O12 from the mixture having the first precursor and the second precursor mixed therein, wherein the compound is doped with the second and third metal elements.
Abstract:
Provided is a method for manufacturing a sulfide-based solid electrolyte including preparing a precursor comprising lithium sulfide, germanium sulfide, aluminum sulfide, phosphorus sulfide, and sulfur, conducting a mixing process of the precursor to prepare a mixture, and crystallizing the mixture to form a compound represented by Li9.7Al0.3Ge0.7P2S12. The sulfide-based solid electrolyte may have high ionic conductivity.
Abstract:
An organic/inorganic hybrid electrolyte includes inorganic particles, a first polymer surrounding the inorganic particles, a second polymer having a network structure and surrounding the first polymer, and an organic solution. In the organic/inorganic hybrid electrolyte, ions may be transferred to the organic solution through the first polymer and/or the second polymer. As the inorganic particles are distributed to be provided, they may be involved in transferring ions in the organic/inorganic hybrid electrolyte. The organic/inorganic hybrid electrolyte may have high ionic conductivity while ensuring stability and mechanical strength.
Abstract:
Provided is a lithium secondary battery including a first electrode, a second electrode spaced apart from the first electrode, a solid electrolyte disposed between the first electrode and the second electrode, wherein the solid electrolyte includes a fibril and a plurality of sulfide particles, the fibril includes polytetrafluoroethylene, the fibril surrounds at least some of the sulfide particles or is in contact with at least some of the sulfide particles.
Abstract:
Disclosed is a battery residual value evaluation system, which includes a measurement unit that measures a voltage and a current of an external battery to generate a voltage signal and a current signal, a resistance calculation unit that generates a resistance value, a resistance change value, and a resistance change rate of the external battery for each of charging and discharging cycles of the external battery based on the voltage signal and the current signal, an external input unit that receives reference ranges from an outside, a determination unit that determines a battery residual value based on whether the resistance value, the resistance change value, and the resistance change rate fall within the reference ranges, respectively, and an output unit that outputs the determination result to the outside.
Abstract:
Provided is a cellulose derivative composition for a secondary battery binder, a method of preparing a composition for a secondary battery electrode, including the same, and a secondary battery including the same. According to the inventive concept, the cellulose derivative composition for a secondary battery binder may include a compound represented by Formula 1 below.
Abstract:
Provided is a method for manufacturing a solid secondary battery, wherein the method includes forming a composite electrolyte film, and forming a positive electrode and a negative electrode respectively on both surfaces of the composite electrolyte film. The forming of a composite electrolyte film includes preparing inorganic ion conductor powder coated with an ion resistance layer, removing the ion resistance layer to expose the surface of the inorganic ion conductor powder, mixing the inorganic ion conductor powder with an organic ion conductor and a solvent to prepare a composite electrolyte solution, and removing the solvent from the composite electrolyte solution.