Abstract:
A method, system, and device provide power-efficient communications within the context of available power. Transmission and receipt data rates are scalable in accordance with output power available from a power source. Data is transmitted at a data rate determined, at least in part, by the available output power.
Abstract:
A method, system, and device provide power-efficient communications within the context of available power. Transmission and receipt data rates are scalable in accordance with output power available from a power source. Data is transmitted at a data rate determined, at least in part, by the available output power.
Abstract:
A method, system, and device provide asymmetric round-trip-time (RTT) ranging with multipath correction. A RTT ranging determination using the resulting composite received signal contains multipath error, and compensation or correction of this error in a manner compatible with low-power, low-complexity devices, such as tag devices, is provided.
Abstract:
A method, system, network and device provide Smart Grid Radio Frequency Interference (RFI) detection. One or more symbols or chips present in one or more received radio frequency signals are detected and the presence of one or more erred symbols or chips in the detected one or more symbols present in the received one or more radio frequency signals determined. A correlation in time between the one or more erred symbols or chips and an infrastructure waveform associated with electrical infrastructure can be determined. When the determined correlation indicates the electrical infrastructure as a source of detectable radio frequency interference to a device, a pattern flag is generated. The pattern flag or pattern flag representation can be stored and/or transmitted.
Abstract:
A method (300) and cognitive radio (CR) wireless device (102) are provided for dynamically accessing spectrum in an opportunistic spectrum access wireless communication system (100). The method includes: transmitting, from a CR wireless device, a signal (216) having a first bandwidth within an unoccupied portion of spectrum (206), and after a time interval (T3) following the transmitting, and upon determining that an adjacent spectral quantum is occupied, transmitting from the CR wireless device a signal (216) having a second bandwidth, the second bandwidth being less than the first bandwidth. The method doubles a rate of growth of bandwidth of a transmitted signal when a spectral quantum adjacent to one side of the signal is unoccupied and a spectral quantum adjacent to the other side of the signal is occupied. The method utilizes knowledge of location of the CR wireless device and of band-edges to intelligently use spectral fence quanta.
Abstract:
A method and apparatus for a highpass filter structure using transmission line construction which has multiple output tabs for selection of corner frequencies utilizing a plurality of resonators coupled to the transmission line. The transmission line has a characteristic impedance which increases exponentially with respect to a distance from the input.
Abstract:
A process for merging and using the Mediation Device Protocol with a network layer protocol. Under the merged protocol, each device joining a network enters into two stages: the Set-Up Stage and the Normal Operational Stage. During the Set-Up Stage, the device identifies its neighbors, builds a neighborhood list, obtains a Logical ID, and picks a parent node in the network. After the Set-Up Stage is complete, the device enters the Normal Operational Stage where it will send/receive control and data messages, invite and help new nodes to join the network, recover from broken links or topology changes, and other normal network operations.
Abstract:
A transceiver device (52 or 10) operates as a source of a data transmission in a communication system (50) capable of dynamically allocating spectrum for transmission of the data transmission between the transceiver device (52) and a second transceiver device (51). The transceiver device (10) includes a transmitter, a receiver coupled to the transmitter and a processor or controller (12) coupled to the transmitter and receiver. The transceiver device is programmed to monitor the spectrum (channels 1-13 of FIG. 3) to determine if a portion (channels 4-8 for example in time slot 8) of the spectrum is available. The transceiver determines what portion of the spectrum is desired for data transmission and then transmits (see time slots 11 and 13) the data transmission within a dynamically selected portion of the available spectrum.
Abstract:
A system and method for orthogonal modulation of signals in communication systems. In the transmitter, differentially coded symbols are used to select time-shifted code sequences. The timing, or code position, of a code sequence is determined at the receiver by comparison to the previous code from the same channel, thus eliminating the need for dual-channel transmission and eliminating error due to differences in path propagation time. A fixed preamble code is also used to synchronize the receiver.
Abstract:
A method for determining whether a baud rate of a frequency modulated (FM) signal received by a receiver matches a predetermined baud rate. A parameter other than the baud rate is detected and used to confirm whether baud rate detection should be made, or whether if made, is reliable. The parameter is frequency deviation of the received FM signal, or other suitable parameters of the received FM signal.