Abstract:
An optical signal transmission system and method of allocating center frequencies of intermediate frequency (IF) carriers in a frequency division multiplexing (FDM) optical fiber link. The optical signal transmission method includes determining a center frequency interval between modulated signals based on a bandwidth of the modulated signals or a center frequency of a modulated signal having a lowest center frequency, among the modulated signals, reallocating center frequencies to the modulated signals based on the center frequency interval between the modulated signals, and converting the modulated signals reallocated the center frequencies from electrical signal into optical signal and transmitting the optical signal.
Abstract:
An optical demultiplexing apparatus and method for multi-carrier distribution are provided. The optical demultiplexing apparatus may include a demultiplexer and a carrier distributor. The optical demultiplexing apparatus and method allow efficient demultiplexing of a multi-carrier light source by using a single demultiplexer even when a carrier spacing of the light source varies.
Abstract:
An optical transmitting apparatus based on multicarrier differential phase shift keying. The optical transmitting may include a multicarrier generator to output two or more optical signals, each of which has a different wavelength; two or more optical modulators to receive the two or more optical signals, respectively, which have been output from the multicarrier generator, wherein each of the two or more optical modulators modulates phases of the two or more received optical signals by electrical signals that are applied in pairs.
Abstract:
A polarization control device in accordance with an exemplary embodiment of the present invention may include a first polarization converter for converting a polarization angle of an input optical signal in response to first control voltages, a second polarization converter for converting a polarization angle of an input optical signal in response to second control voltages, and a third polarization converter for converting an optical signal received from the first polarization converter or the second polarization converter into a first output optical signal having a linear polarization state and outputting the first output optical signal.
Abstract:
Provided are a power management method and apparatus of an ONU supporting a slicing function. A power management method performed by a power management apparatus of an ONU supporting a slicing function includes receiving a first message for discovering a power management attribute of an ONU including at least one slice from an optical line terminal (OLT), transmitting a second message including the power management attribute of the ONU to the OLT in response to the first message received, receiving a third message for setting up a power management parameter for each slice included in the ONU from the OLT, setting up the power management parameter for each slice included in the ONU based on the third message received, and transmitting a fourth message including a set up result of the power management parameter for each slice included in the ONU to the OLT.
Abstract:
Provided are a method of bandwidth allocation for transmitting mobile data and a network device. The bandwidth allocation method includes receiving a cooperative transport interface (CTI) message including a traffic pattern corresponding to a CTI pattern identification (ID) from a distributed unit (DU) of a mobile network, and allocating a bandwidth for transmitting mobile data based on the traffic pattern included in the CTI message.
Abstract:
An integrated dynamic bandwidth allocation method and apparatus in a passive optical network (PON) are provided. The bandwidth allocation method performed by an optical line terminal (OLT) includes generating a service level agreement (SLA) table including an SLA required for calculation for bandwidth allocation corresponding to at least one service queue included in at least one optical network unit (ONU) connected to the OLT, calculating maximum allocatable bandwidths for respective predetermined cycles based on the generated SLA table, and, when a service queue requiring bandwidth allocation is present in the ONU, performing bandwidth allocation according to different bandwidth allocation methods based on a priority level of the service queue using the calculated maximum allocatable bandwidths.
Abstract:
A bandwidth allocation apparatus and method for providing a low-latency service in an optical network that may guarantee low-latency requirements and improve a network utilization rate by allocating a static bandwidth to an ONU requiring low latency within an allocable bandwidth and by allocating a dynamic bandwidth to an ONU not requiring the low latency within a remaining bandwidth.
Abstract:
Provided is an analog optical transmission system using a dispersion management technique. The analog optical transmission system may include a digital unit (DU) pool including a plurality of DUs to transmit an optical signal; a plurality of radio units (RUs) to receive the optical signal; and one or more dispersion management apparatus to remove a signal distortion component caused by an interaction between a chirp and chromatic dispersion by compensating for the chromatic dispersion before the plurality of RUs receives the optical signal that is transmitted from the DU pool.
Abstract:
An optical fiber cable of a mobile fronthaul system based on a radio over fiber (RoF), which includes a control apparatus for monitoring an analog optical link according to an exemplary embodiment, may be monitored. The monitoring control apparatus may include an optical signal monitor to monitor an optical signal passing through an optical fiber cable, and a system controller to control the optical signal based on a result of the monitoring. The optical signal monitor may calculate an average optical power, carrier-to-noise ratio (CNR), and a size of a nonlinear component from an electrical signal, which has been acquired from the optical signal. Then, the optical signal monitor may control the calculated average optical power, CNR, and nonlinear component.