Abstract:
The magnetic recording medium includes a non-magnetic support and a magnetic layer, wherein the magnetic layer contains ferromagnetic hexagonal ferrite powder and an abrasive, Int (110)/Int (114) of a crystal structure of the hexagonal ferrite determined by performing XRD analysis on the magnetic layer by using an In-Plane method is equal to or higher than 0.5 and equal to or lower than 4.0, a squareness ratio of the magnetic recording medium in a vertical direction is equal to or higher than 0.65 and equal to or lower than 1.00, one or more kinds of components selected from the group consisting of a fatty acid and a fatty acid amide is contained in a magnetic layer side portion on the support, and a C—H-derived C concentration obtained by ESCA within a surface of the magnetic layer at a photoelectron take-off angle of 10° is equal to or higher than 45 at %.
Abstract:
The magnetic tape has a magnetic layer containing ferromagnetic powder and binder on a nonmagnetic support, wherein the centerline average surface roughness Ra as measured on the surface on the magnetic layer side of the magnetic tape is less than or equal to 1.8 nm, and the logarithmic decrement as determined by a pendulum viscoelasticity test on the surface on the magnetic layer side of the magnetic tape is less than or equal to 0.050.
Abstract:
The magnetic tape has a magnetic layer containing ferromagnetic powder and binder on a nonmagnetic support, wherein the centerline average surface roughness Ra as measured on the surface on the magnetic layer side of the magnetic tape is less than or equal to 1.8 nm, and the logarithmic decrement as determined by a pendulum viscoelasticity test on the surface on the magnetic layer side of the magnetic tape is less than or equal to 0.050.
Abstract:
A hexagonal ferrite magnetic powder for a magnetic recording medium, containing magnetic powder contains hexagonal ferrite particles having coated on the surface thereof an aluminum hydroxide material, having a Ba/Fe molar ratio of 0.080 or more, a Bi/Fe molar ratio of 0.025 or more, and an Al/Fe molar ratio of from 0.030 to 0.200. The magnetic powder preferably has an activation volume Vact of from 1,300 to 2,000 nm3. The magnetic powder particularly preferably has a coercive force Hc of from 159 to 287 kA/m (approximately from 2,000 to 3,600 Oe) and a coercivity distribution SFD of from 0.3 to 1.0. The magnetic powder may contain one or two or more kinds of a divalent transition metal M1 and a tetravalent transition metal M2, as an element that replaces Fe of the hexagonal ferrite. The magnetic powder has improved magnetic characteristics including SNR and durability.
Abstract:
The magnetic tape comprises, on a nonmagnetic support, a nonmagnetic layer comprising nonmagnetic powder and binder, and on the nonmagnetic layer, a magnetic layer comprising ferromagnetic powder, nonmagnetic powder, and binder, wherein a total thickness of the magnetic tape is less than or equal to 4.80 μm, and a coefficient of friction as measured on a base portion of a surface of the magnetic layer is less than or equal to 0.35.
Abstract:
Hexagonal ferrite magnetic particles have an activation volume ranging from 1,000 nm3 to 1,500 nm3, and ΔE10%/kT, thermal stability at 10% magnetization reversal, is equal to or greater than 40.
Abstract:
An aspect of the present invention relates to hexagonal ferrite magnetic powder, which has an activation volume ranging from 900 nm3 to 1,600 nm3, and a ratio of a coefficient of plate thickness variation to a coefficient of particle diameter variation, coefficient of plate thickness variation/coefficient of particle diameter coefficient, ranging from 0.20 to 0.60.