Abstract:
The magnetic recording medium is used in a magnetic recording and reproducing device in which a reproduction bit size S is 40,000 nm2 or less, and a numerical value of a residual magnetic flux density Brvertical, which is expressed in a unit G, in a vertical direction of the magnetic recording medium is X or more. The X is a value calculated as X = -0.01S + 1550.
Abstract:
A magnetic recording medium for heat-assisted magnetic recording is provided. A magnetic recording layer includes upper and lower magnetic recording layers. The lower magnetic recording layer has a lower granular structure including lower magnetic crystal grains, and a lower non-magnetic portion, that surrounds the lower magnetic crystal grains, mainly composed of carbon. The upper magnetic recording layer has an upper granular structure including upper magnetic crystal grains, and an upper non-magnetic portion, that surrounds the upper magnetic crystal grains, formed from a material selected from the group consisting of silicon nitride, titanium oxide and titanium nitride.
Abstract:
A magnetic recording medium includes: a nonmagnetic support having both principal planes, a nonmagnetic layer formed on one principal plane of the nonmagnetic support and containing a nonmagnetic powder, a conductive particle and a binder, and a magnetic layer formed on the nonmagnetic layer and containing a magnetic powder, a conductive particle and a binder, wherein each of the nonmagnetic layer and the magnetic layer is prepared in a wet on dry mode, and a conduction point particle size of the conductive particle contained in the magnetic layer falls within the range of 3 times or more and not more than 5 times an average thickness of the magnetic layer.
Abstract:
A coating composition, a method for producing the coating composition, a coating film and magnetic recording medium are described. The coating composition comprises a binder, a solvent, and an α-alumina powder, wherein the α-alumina powder satisfies the following (a) and (b): (a) when the α-alumina powder is pressed to obtain a green body and the green body is sintered at 1250° C. under the atmospheric pressure, a relative density of the obtained sintered body is about 80% or more, and (b) a BET specific surface area of the α-alumina powder is about 10 m2/g or more.
Abstract:
A magnetic recording tape includes an elongated substrate and a magnetic side. The magnetic side includes a support layer formed over the substrate and a magnetic recording layer formed over the support layer to define a magnetic recording surface opposite the substrate. The magnetic recording layer includes magnetic particles and a lubricant and supports a net uncompressed density of at least 30 MB/in2. The magnetic side has an extracted BET surface area of greater than 1.0 m2/g.
Abstract:
A magnetic disc medium comprising: a magnetic sheet in the form of a disk; a case encasing the magnetic sheet so as to be capable of rotating; and a nonwoven liner fastened on an inner face of the case so as to face the magnetic sheet, wherein the magnetic sheet comprises a support, a substantially nonmagnetic lower layer, and a magnetic layer containing hexagonal ferrite powder dispersed in a binder and having central plane average surface roughness of from 1 nm to 4 nm, and the liner comprises polyethylene terephthalate in an amount of 20% by weight or more.
Abstract:
A magnetic recording medium with excellent high density recording performances and good durability comprising a non-magnetic substrate, a non-magnetic layer containing a non-magnetic powder and a binder formed on the non-magnetic substrate, and a magnetic layer having a thickness of less than 100 nm and containing a substantially particulate non-magnetic powder, a substantially particulate magnetic powder having an average particle size of less than 25 nm, and a binder, wherein an average particle size R of the non-magnetic powder contained in the magnetic layer and a thickness D of the magnetic powder satisfy the following relationship: 0.88≦R/D≦2.5.
Abstract translation:一种具有优异的高密度记录性能和良好耐久性的磁记录介质,包括非磁性基板,含有非磁性粉末的非磁性层和形成在非磁性基板上的粘合剂,以及具有厚度为 小于100nm,并且含有基本上颗粒的非磁性粉末,平均粒度小于25nm的基本上颗粒的磁性粉末和粘合剂,其中包含在磁性材料中的非磁性粉末的平均粒径R 层和磁粉的厚度D满足以下关系:0.88 <= R / D <= 2.5。
Abstract:
A magnetic recording medium which includes a substrate having a front side and a backside, a longitudinal direction and a cross-web direction, with a particulate/binder or thin film magnetic layer formed over the front side of the substrate, wherein the magnetic medium has a cross-web dimensional difference from the magnetic recording head used therewith of less than 900 μm/meter over a 35° C. temperature range, and over a 70% relative humidity range. Preferred substrates include thin metals, metal alloys, and thin glass films.
Abstract:
A magnetic recording medium which includes a substrate having a front side and a backside, a longitudinal direction and a cross-web direction, with a particulate/binder or thin film magnetic layer formed over the front side of the substrate, wherein the magnetic medium has a cross-web dimensional difference from the magnetic recording head used therewith of less than 900 μm/meter over a 35° C. temperature range, and over a 70% relative humidity range. Preferred substrates include thin metals, metal alloys, and thin glass films.