Abstract:
There is provided a powder material that is for densifying a molded article manufactured by an additive layer manufacturing method and improving harness of the molded article. There is provided a powder material for use in additive layer manufacturing containing ceramics and metals, in which a tapped filling rate defined by (tapped density/theoretical density)×100% is 40% or more.
Abstract:
Provided is a thermal spray material that can form a compact thermal sprayed coating having an enhanced plasma erosion resistance. The herein disclosed art provides a thermal spray material that contains a rare earth element (RE), oxygen (O), and a halogen element (X) as constituent elements and that contains a mixed crystal of a rare earth element oxyhalide (RE-O—X) and a rare earth element halide (REX3).
Abstract:
Provided is thermal spray slurry capable of forming a dense coating by thermal spraying while suppressing cracks. Thermal spray slurry includes thermal spray particles and a dispersion medium in which these thermal spray particles are dispersed. These thermal spray particles have the cumulative frequency of the particle diameter of 13.2 μm in the volume-based cumulative particle diameter distribution that is 95% or more, and the cumulative frequency of the particle diameter of 0.51 μm that is 8% or less.
Abstract:
[Problem] To provide a powder material that has good fluidity and is used for powder additive manufacturing.[Solution] The powder material of this invention is used in powder additive manufacturing. The powder material is formed of particles having a form of secondary particles that are formed with primary particles bound three-dimensionally with interspaces. The secondary particles forming the powder material preferably have an average particle diameter of 1 μm or larger, but 100 μm or smaller. The secondary particles forming the powder material are preferably granulated particles. The powder additive manufacturing method of this invention is carried out, using the powder material.
Abstract:
To provide a slurry for thermal spraying capable of forming a favorable sprayed coating. The present invention provides a slurry for thermal spraying including spray particles including at least one material selected from the group consisting of ceramics, inorganic compounds, cermets, and metals and a dispersion medium. Here, the spray particles have an average particle size of 0.01 μm or more and 10 μm or less and are contained in the slurry for thermal spraying at a proportion of 10% by mass or more and 70% by mass or less. In the slurry for thermal spraying, the spray particles have a zeta potential of −200 mV or more and 200 mV or less.
Abstract:
This invention provides a thermal spray material capable of forming a thermal spray coating with greater plasma erosion resistance. The thermal spray material comprises at least 77% by mass rare earth element oxyhalide (RE-O-X) which comprises a rare earth element (RE), oxygen (O) and a halogen atom (X) as its elemental constituents. It is characterized by being essentially free of an oxide of the rare earth element
Abstract:
This invention provides a thermal spray material capable of forming a thermal spray coating excellent in plasma erosion resistance as well as in properties such as porosity and hardness. The thermal spray material comprises a rare earth element oxyhalide (RE-O—X) which comprises a rare earth element (RE), oxygen (O) and a halogen atom (X) as its elemental constituents. The rare earth element oxyhalide has a halogen to rare earth element molar ratio (X/RE) of 1.1 or greater.