Abstract:
A social networking system receives messages from users that include links to webpages that designate keywords of the webpage. The social networking system identifies webpages linked by users to generate computer models that predict whether a webpage or message should be associated with particular keywords. The social networking system generates computer models that are trained on example webpages and related keywords linked by users in messages. Prior to generating computer models, the social networking system applies one or more filters to exclude webpages and keywords from consideration. The filters may exclude webpages that have low-reliability, are associated with an excessive number of keywords, or keywords that appear on an insufficient number of domains. After training the computer models, messages composed by users may be analyzed and a keyword predicted for the message, which may be suggested to the user to categorize the message.
Abstract:
Systems, methods, and non-transitory computer readable media configured to detect access by a user to an original content item relating to a story. At least one of a comments based technique, a token based technique, and a tag based technique is performed on content items. Constraints are applied to identify at least one follow up content item from the content items relating to a development of the story.
Abstract:
Systems, methods, and non-transitory computer readable media configured to determine a value of a utility factor associated with a content item corresponding to a link. An optimized utility value relating to an interaction type of an outbound click is determined based on the value of the utility factor. An expected utility score associated with the content item is generated based on the optimized utility value to determine potential presentation of the content item to a user.
Abstract:
The present disclosure relates to techniques for determining trustworthiness of a domain among users. The determination may be based upon trust scores provided by the users for the domain. When all users have specified a trust score for the domain, an overall trust score may be computed based upon the specified trust scores. When some users have not specified a trust score for the domain, trust scores may be computed for the users based upon the specified trust scores, and an overall trust score may be computed based upon the specified trust scores and the computed trust scores. Based on the overall trust score, a social networking system may send content to users of the social networking system.
Abstract:
An online system generates a feed of content for a user that includes content items provided by, or otherwise related to, other users who are connected to the user via the online system. The online system supplements the feed with additional content items that are not related to users who are connected to the user but are likely to be of interest to the user. The additional content items may be associated with users who are connected to additional users who are connected to the user, content items having received a threshold amount of interacting by other users, content items provided by users who provided other content with which the user interacted, or have other characteristics. The additional content items and content items associated with users connected to the user are included in one or more selection processes that generate the feed for the user.
Abstract:
An online system receives a posted content item from a posting user. The online system labels the posted content item with an audience, the audience being a subset of a group of users having an affinity to a topic of the online system, the subset of the group of users sharing a particular treatment regarding the topic. After identifying an opportunity to present content to a viewing user, the online system selects candidate content items, and scores each candidate content item by determining whether the candidate content item is associated with an audience that includes the viewing user, and if so, modifying the score of the candidate content item to be higher. The online system ranks the candidate content items based on the associated score, selects a subset of the candidate content items based on the associated ranking, and presents the selected subset to the viewing user.
Abstract:
An online system ranks topic-groups for users and presents content items in topic-based feeds. A topic group corresponds to one or more topic(s) and can be used to generate a feed for presenting the content items related to the topic(s). For a particular user, the topic groups are ranked according to the likelihood of the user interacting with content items included in the topic groups. The topic groups are ranked using information of the users and/or users' historical interaction data such as click-based interaction data, post-based interaction data, or engagement-based interaction data. The online system generates and provides a user interface for presenting the topic groups to the client device. Content items that are related to the topic(s) corresponding to the topic group are presented in each topic-based feed such that the user can switch between different topic-based feeds.
Abstract:
A social networking system classifies content items according to their qualities for ranking and selection of content items to present to users within, for example, a newsfeed. Low-quality content items that are unlikely to be interesting or relevant to a user may be distinguished though they may appear to be popular among users in the social networking system. The social networking system identifies within the content items one or more features that are indicators of the quality of the content items. The social networking system can use one or more classifiers to evaluate the content items based on the features, and it can compute a quality metric indicating the quality of a content item based on the result obtained from the classifiers. The quality metric can be used in the ranking and selection of a set of content items to provide to the user.
Abstract:
A social networking system classifies content items according to their qualities for ranking and selection of content items to present to users within, for example, a newsfeed. Low-quality content items that are unlikely to be interesting or relevant to a user may be distinguished though they may appear to be popular among users in the social networking system. The social networking system identifies within the content items one or more features that are indicators of the quality of the content items. The social networking system can use one or more classifiers to evaluate the content items based on the features, and it can compute a quality metric indicating the quality of a content item based on the result obtained from the classifiers. The quality metric can be used in the ranking and selection of a set of content items to provide to the user.
Abstract:
A social networking system generates a newsfeed for a user to view when accessing the social networking system. Candidate stories associated with users of the social networking system are selected and an expected value score for each candidate story is determined. An expected value score is based on the probability of a user performing various types of interactions with a candidate story and a numerical value for each type of interaction. The numerical value for a type of interaction represents a value to the social networking system of the type of interaction. Based on the expected value scores, the candidate stories are ranked and the ranking used to select candidate stories for the newsfeed.