Abstract:
An online system predicts topics for content items. The online system provides one or more topic labels for a user to apply concurrently while a user is composing a post, in response to requests periodically received from the user's device. A request includes information such as content composed by the user and contextual information. The online system employs machine learning techniques to analyze content composed by a user and contextual information thereby to predict topic labels. Different machine learning models for classifying individual topic labels, identifying relevant topic labels, and/or detecting changes in existing topic predictions are developed. Some machine learning models predict topics for full content and some predict topics for partial content. The online system trains the machine learning models to ensure accurate topic predictions are provided timely. The online system employs various machine learning model training methods such as active training and gradient training.
Abstract:
A social networking system generates stories based on actions of users in the system and provides a newsfeed to users that contain stories that related to one or more of their friends in the system. Although the story ranking algorithm includes a time decay to penalize older stories, stories may actually become stale at different rates. To measure the staleness of a story, the system computes a ratio of a current engagement rate for the story to an average engagement rate for the story. Based on this ratio, the system may filter out stale stories, includes the ratio as a feature in the scoring model, and/or adjust the decay rate.
Abstract:
A social networking system receives messages from users that include hashtags. The social networking system may use a natural language model to identify terms in the hashtag corresponding to words or phrases of the hashtag. The words or phrases may be used to modify a string of the hashtag. The social networking system may also generate computer models to determine likely membership of a message with various hashtags. Prior to generating the computer models, the social networking system may filter certain hashtags from eligibility for computer modeling, particularly hashtags that are not frequently used or that more typically appear as normal text in a message instead of as a hashtag. The social networking system may also calibrate the computer model outputs by comparing a test message output with outputs of a calibration group that includes positive and negative examples with respect to the computer model output.
Abstract:
A social networking system receives messages from users that include hashtags. The social networking system may use a natural language model to identify terms in the hashtag corresponding to words or phrases of the hashtag. The words or phrases may be used to modify a string of the hashtag. The social networking system may also generate computer models to determine likely membership of a message with various hashtags. Prior to generating the computer models, the social networking system may filter certain hashtags from eligibility for computer modeling, particularly hashtags that are not frequently used or that more typically appear as normal text in a message instead of as a hashtag. The social networking system may also calibrate the computer model outputs by comparing a test message output with outputs of a calibration group that includes positive and negative examples with respect to the computer model output.
Abstract:
Systems, methods, and non-transitory computer-readable media can identify a source content item for which related content is to be provided. A set of candidate content items associated with the source content item can be selected. The set of candidate content items can be ranked based, at least in part, on a set of engagement signals associated with the set of candidate content items. A subset of highest ranked candidate content items out of the set of candidate content items can be provided as the related content for the source content item.
Abstract:
An online system predicts topics for content items. The online system provides one or more topic labels for a user to apply concurrently while a user is composing a post, in response to requests periodically received from the user's device. A request includes information such as content composed by the user and contextual information. The online system employs machine learning techniques to analyze content composed by a user and contextual information thereby to predict topic labels. Different machine learning models for classifying individual topic labels, identifying relevant topic labels, and/or detecting changes in existing topic predictions are developed. Some machine learning models predict topics for full content and some predict topics for partial content. The online system trains the machine learning models to ensure accurate topic predictions are provided timely. The online system employs various machine learning model training methods such as active training and gradient training.
Abstract:
A social networking system classifies content items according to their qualities for ranking and selection of content items to present to users within, for example, a newsfeed. Low-quality content items that are unlikely to be interesting or relevant to a user may be distinguished though they may appear to be popular among users in the social networking system. The social networking system identifies within the content items one or more features that are indicators of the quality of the content items. The social networking system can use one or more classifiers to evaluate the content items based on the features, and it can compute a quality metric indicating the quality of a content item based on the result obtained from the classifiers. The quality metric can be used in the ranking and selection of a set of content items to provide to the user.
Abstract:
An online system receives a posted content item from a posting user. The online system labels the posted content item with an audience, the audience being a subset of a group of users having an affinity to a topic of the online system, the subset of the group of users sharing a particular treatment regarding the topic. After identifying an opportunity to present content to a viewing user, the online system selects candidate content items, and scores each candidate content item by determining whether the candidate content item is associated with an audience that includes the viewing user, and if so, modifying the score of the candidate content item to be higher. The online system ranks the candidate content items based on the associated score, selects a subset of the candidate content items based on the associated ranking, and presents the selected subset to the viewing user.
Abstract:
Systems, methods, and non-transitory computer readable media configured to determine a value of a utility factor associated with a content item corresponding to a link. An optimized utility value relating to an interaction type of an outbound click is determined based on the value of the utility factor. An expected utility score associated with the content item is generated based on the optimized utility value to determine potential presentation of the content item to a user.
Abstract:
A social networking system generates stories based on actions of users in the system and provides a newsfeed to users that contain stories that related to one or more of their friends in the system. Although the story ranking algorithm includes a time decay to penalize older stories, stories may actually become stale at different rates. To measure the staleness of a story, the system computes a ratio of a current engagement rate for the story to an average engagement rate for the story. Based on this ratio, the system may filter out stale stories, includes the ratio as a feature in the scoring model, and/or adjust the decay rate.