Abstract:
Disclosed are systems, apparatuses, and methods for monitoring fluid passage. In an embodiment, a device may receive a thermographic image of a region comprising a fluid passage. Subsequently the device may determine that the thermographic image comprises an image pattern indicative of a degraded portion of the fluid passage.
Abstract:
Disclosed are methods, apparatuses, and systems for generating an alert message based on a determined crossing of a weight threshold of a filter.
Abstract:
A system and method for supercharging a combined cycle system includes a forced draft fan providing a variable air flow. At least a first portion of the air flow is directed to a compressor and a second portion of the airflow is diverted to a heat recovery steam generator. A control system controls the airflows provided to the compressor and the heat recovery steam generator. The system allows a combined cycle system to be operated at a desired operating state, balancing cycle efficiency and component life, by controlling the flow of air from the forced draft fan to the compressor and the heat recovery steam generator.
Abstract:
A lubrication system for a heavy duty gas turbine includes a bearing lubrication assembly coupled to the bearing and an oil and vapor extraction assembly disposed in a cavity defined by a bell mouth hood in an air inlet duct. A high volume vacuum blower is coupled to the oil and vapor extraction assembly to provide a relative negative pressure. An oil and vapor separator is disposed downstream from the high volume vacuum blower. The lubrication system also includes a control subsystem that maintains a cavity pressure lower than an air inlet pressure.
Abstract:
The present application thus provides a wash system for use with a compressor having a bellmouth and one or more extraction pipes. The wash system may include a water source, a first fluid source, a mixing chamber in communication with the water source and the first fluid source, a bellmouth line in communication with the mixing chamber and the bellmouth, and a stage line in communication with one of the extraction pipes.
Abstract:
A lift system and method for installation and removal of a combustion can from a turbomachine are provided. The lift system includes a rail, a portable cart assembly, and a slide assembly. The portable cart assembly includes a combustion can cradle assembly coupled to a telescopic member. The combustion can cradle assembly is configured to removably couple to a combustion can of the turbomachine. The slide assembly is removably couplable to the portable cart assembly and the rail. The slide assembly is movable with the portable cart assembly along the rail to adjust a position of the combustion can cradle assembly.
Abstract:
A gas turbine engine system includes a compressor, gas turbine, and combustor including a plurality of late lean fuel injectors supplied with secondary fuel to its interior. The gas turbine engine system includes a wash system in communication with the late lean fuel injectors. The wash system includes a water source; water pump; anti-corrosion agent fluid source with an anti-corrosion agent including a polyamine corrosion inhibitor; anti-corrosion agent supply piping in fluid communication with the anti-corrosion agent fluid source; mixing chamber receiving water and anti-corrosion agent to produce an anti-corrosion mixture in fluid communication with the mixing chamber and the plurality of late lean fuel injectors. Fluid from the mixing chamber including the water, the anti-corrosion agent fluid source, or a mixture thereof is injected, while the gas turbine engine is off-line, into the combustor at at least one of the plurality of late lean fuel injectors.
Abstract:
A gas turbine engine system includes a compressor, gas turbine, and combustor including a plurality of late lean fuel injectors supplied with secondary fuel to its interior. The gas turbine engine system includes a wash system in communication with the late lean fuel injectors. The wash system includes a water source; water pump; anti-corrosion agent fluid source with an anti-corrosion agent including a polyamine corrosion inhibitor; anti-corrosion agent supply piping in fluid communication with the anti-corrosion agent fluid source; mixing chamber receiving water and anti-corrosion agent to produce an anti-corrosion mixture in fluid communication with the mixing chamber and the plurality of late lean fuel injectors. Fluid from the mixing chamber including the water, the anti-corrosion agent fluid source, or a mixture thereof is injected, while the gas turbine engine is off-line, into the combustor at at least one of the plurality of late lean fuel injectors.
Abstract:
A combined cycle power plant that includes a first gas turbine engine including a first turbine section, a second gas turbine engine including a second turbine section having an aft outlet configured to discharge an exhaust gas stream, an emissions reduction system configured to receive the exhaust gas stream discharged from the second gas turbine engine, and configured to remove oxides of nitrogen from the exhaust gas stream, and an interstage extraction system communicatively coupled with the first turbine section. The interstage extraction system is configured to selectively extract turbine extraction air from the first turbine section for providing heat to the emissions reduction system.
Abstract:
A power plant includes an exhaust duct that receives an exhaust gas from an outlet of the turbine outlet and an ejector having a primary inlet fluidly coupled to a compressor extraction port. The ejector receives a stream of compressed air from the compressor via the compressor extraction port. The power plant further includes a static mixer having a primary inlet fluidly coupled to a turbine extraction port, a secondary inlet fluidly coupled to an outlet of the ejector and an outlet that is in fluid communication with the exhaust duct. A stream of combustion gas flows from a hot gas path of the turbine and into the inlet of the static mixer via the turbine extraction port. The static mixer receives a stream of cooled compressed air from the ejector to cool the stream of combustion gas upstream from the exhaust duct. The cooled combustion gas mixes with the exhaust gas within the exhaust duct to provide a heated exhaust gas mixture to a heat exchanger.