Abstract:
A superconducting magnet apparatus includes a plurality of superconducting magnet coil sections connected in series and housed within a cryogenically cooled, vacuum container. A power source generates a current. A first lead is electrically connected to the superconducting magnet coil sections. A second lead is enclosed entirely within the vacuum container. The second lead has a first section and a second section, and the first section is electrically connected to the power source. The second section is electrically connected to the first lead, and rigidly connected to a linear displacement device enclosed entirely within the vacuum container. The linear displacement device linearly displaces the second section relative to the first section, so that the first section contacts the second section thereby electrically connecting the first and second sections, or by creating a gap between the first section and second section thereby electrically disconnecting the first section from the second section.
Abstract:
A turbine engine comprising a compressor section and a turbine section in serial flow arrangement defining a working air flow path with a heat exchanger in fluid communication the working air flow path, and a nuclear fuel in thermal communication with the heat exchanger and a release valve in fluid communication with the working air flow path.
Abstract:
A wind turbine power generating system and method includes a tower, a hub, a plurality of blades connected to the hub, and a rotor connected to the hub. A superconducting generator is coupled to the rotor and includes a plurality of superconductive coils. A nacelle is mounted atop the tower, with the superconducting generator housed within the nacelle. An automatic ramp-down system is configured with the superconducting coils and includes an automatically activated energy dump circuit for current withdrawn from the superconductive coils in a ramp-down process prior to a quench. The energy dump circuit includes one or more heat dissipating loads, wherein each of the heat dissipating loads is mounted in thermal communication with one of the tower or the nacelle that act a thermal heat sink for dispersing heat from the loads.
Abstract:
A high-voltage direct-current (HVDC) transmission system includes an alternating current (AC) electrical source and a power converter channel that includes an AC-DC converter electrically coupled to the electrical source and a DC-AC inverter electrically coupled to the AC-DC converter. The AC-DC converter and the DC-AC inverter each include a plurality of legs that includes at least one switching device. The power converter channel further includes a commutating circuit communicatively coupled to one or more switching devices. The commutating circuit is configured to “switch on” one of the switching devices during a first portion of a cycle of the H-bridge switching circuits and “switch off” the switching device during a second portion of the cycle of the first and second H-bridge switching circuits.
Abstract:
A submersible liquid-vapor generator (LVG) includes an evaporator portion in heat transfer communication with a heat energy source. The LVG also includes a magnetic field apparatus coupled in flow communication with the evaporator portion. The LVG further includes a condenser portion coupled in flow communication with the magnetic field apparatus. The LVG also includes a hybrid working fluid including nanoparticles. The evaporator portion, the magnetic field portion, and the condenser portion at least partially define a hybrid working vapor flow path. The LVG further includes an electrically non-conductive wick structure coupled in flow communication with the evaporator portion and the condenser portion. The wick structure at least partially defines a hybrid working liquid flow path extending between the condenser portion and the evaporator portion.
Abstract:
A high-voltage direct-current (HVDC) transmission system includes an alternating current (AC) electrical source and a power converter channel that includes an AC-DC converter electrically coupled to the electrical source and a DC-AC inverter electrically coupled to the AC-DC converter. The AC-DC converter and the DC-AC inverter each include a plurality of legs that includes at least one switching device. The power converter channel further includes a commutating circuit communicatively coupled to one or more switching devices. The commutating circuit is configured to “switch on” one of the switching devices during a first portion of a cycle of the H-bridge switching circuits and “switch off” the switching device during a second portion of the cycle of the first and second H-bridge switching circuits.
Abstract:
A voltage source converter based high-voltage direct-current (HVDC) transmission system includes a voltage source converter (VSC)-based power converter channel. The VSC-based power converter channel includes an AC-DC converter and a DC-AC inverter electrically coupled to the AC-DC converter. The AC-DC converter and a DC-AC inverter include at least one gas tube switching device coupled in electrical anti-parallel with a respective gas tube diode. The VSC-based power converter channel includes a commutating circuit communicatively coupled to one or more of the at least one gas tube switching devices. The commutating circuit is configured to “switch on” a respective one of the one or more gas tube switching devices during a first portion of an operational cycle and “switch off” the respective one of the one or more gas tube switching devices during a second portion of the operational cycle.
Abstract:
A system for measuring nutritional parameters of food items is provided. The system includes a holding cavity. The system further includes a sensor assembly that includes a transmitter antenna and at least one receiver antenna. The transmitter antenna is configured to transmit signals to a food item in the holding cavity. The receiver antenna is configured to receive response signals from the food item. The system includes at least one switch coupled to each antenna. The switch, in a first state, is configured to set the sensor assembly to an electric potential equal to that of the holding cavity. In a second state, the switch is configured to couple the sensor assembly to a power source. The system also includes a processing unit to process the signals received to determine the nutritional parameters of the food item.