Abstract:
An external reactor vessel cooling and electric power generation system according to the present invention includes an external reactor vessel cooling section formed to enclose at least part of a reactor vessel with small-scale facilities so as to cool heat discharged from the reactor vessel, a power production section including a small turbine and a small generator to generate electric energy using a fluid that receives heat from the external reactor vessel cooling section, a condensation heat exchange section 140 to perform a heat exchange of the fluid discharged after operating the small turbine, and condense the fluid to generate condensed water, and a condensed water storage section to collect therein the condensed water generated in the condensation heat exchange section, wherein the fluid is phase-changed into gas by the heat received from the reactor vessel. The external reactor vessel cooling and electric power generation system according to the present invention can continuously operate even during an accident as well as during a normal operation to cool the reactor vessel and produce emergency power, thereby enhancing system reliability. The external reactor vessel cooling and electric power generation system according to the present invention can easily apply safety class or seismic design using small-scale facilities, and its reliability can be improved owing to applying the safety class or seismic design.
Abstract:
Steam generators in power plants exchange energy from a primary medium to a secondary medium for energy extraction. Steam generators includes one or more primary conduits and one or more secondary conduits. The conduits do not intermix the mediums and may thus discriminate among different fluid sources and destinations. One conduit may boil feedwater while another reheats steam for use in lower and higher-pressure turbines, respectively. Valves and other selectors divert steam and/or water into the steam generator or to other turbines or the environment for load balancing and other operational characteristics. Conduits circulate around an interior perimeter of the steam generator immersed in the primary medium and may have different cross-sections, radii, and internal structures depending on contained. A water conduit may have less flow area and a tighter coil radius. A steam conduit may include a swirler and rivulet stopper to intermix water in any steam flow.
Abstract:
In one embodiment, the steam separator includes a standpipe configured to receive a gas-liquid two-phase flow stream, and a first swirler configured to receive the gas-liquid two-phase flow stream from the standpipe. The first swirler is configured to separate the gas-liquid two-phase flow stream. The first swirler includes a direct flow portion and an indirect flow portion. The direct flow portion has a direct flow channel for permitting direct flow of the gas-liquid two-phase flow stream through the first swirler, and the indirect flow portion has at least one indirect flow channel defined by at least one vane in the first swirler for providing an indirect flow of the gas-liquid two-phase flow stream through the first swirler.
Abstract:
A compact bayonet tube type heat exchanger which finds particular application as an auxiliary heat exchanger for transfer of heat from a reactor gas coolant to a secondary fluid medium. The heat exchanger is supported within a vertical cavity in a reactor vessel intersected by a reactor coolant passage at its upper end and having a reactor coolant return duct spaced below the inlet passage. The heat exchanger includes a plurality of relatively short length bayonet type heat exchange tube assemblies adapted to pass a secondary fluid medium therethrough and supported by primary and secondary tube sheets which are releasibly supported in a manner to facilitate removal and inspection of the bayonet tube assemblies from an access area below the heat exchanger. Inner and outer shrouds extend circumferentially of the tube assemblies and cause the reactor coolant to flow downwardly internally of the shrouds over the tube bundle and exit through the lower end of the inner shroud for passage to the return duct in the reactor vessel.
Abstract:
A coolant pump and a steam generator are formed together into a structural unit, the steam generator being a straight-tube steam generator having a central ascending pipe, a tube bundle having a central passageway through which the ascending pipe extends, an upper primary-side inlet, chamber communicating with the tube bundle at an upper end thereof, a lower primary chamber communicating with the tube bundle at a lower end thereof, the central ascending pipe communicating with the inlet chamber for feeding primary medium thereto from which the primary medium flows back through the tube bundle to the lower primary chamber, the ascending pipe having an axial elongation, the coolant pump having an impeller and a guidance device surrounding the impeller, the ascending pipe-elongation having a construction corresponding to that of the guidance device, partition means for dividing the lower primary chamber into a suction space and an outlet chamber space, the pump having a suction side connected through the suction space of the lower primary chamber to a hot line string of a double line connected to the steam generator, the outlet chamber space of the lower primary chamber being connected to a cold line string of the double line.
Abstract:
Steam generator systems including tubesheet assemblies, such as for use in nuclear reactor systems, and associated devices and methods are described herein. A representative steam generator system can be installed in a nuclear reactor vessel positioned to house a primary coolant. The steam generator system can include a tubesheet assembly defining a plenum and comprising a tubesheet and a flexible connection portion coupling the tubesheet to the reactor vessel. The tubesheet can include a plurality of perforations fluidly coupled to the plenum. The steam generator system can further comprise a plurality of heat transfer tubes fluidly coupled to the perforations and configured to receive a flow of a secondary coolant. The connection portion can be more flexible than the tubesheet and the reactor vessel to reduce stresses on the tubesheet and the connections (e.g., tube-to-tubesheet (TTS) welds) between the tubes and the tubesheet during operation of the nuclear reactor system.
Abstract:
Steam generators in power plants exchange energy from a primary medium to a secondary medium for energy extraction. Steam generators include one or more primary conduits and one or more secondary conduits. The conduits do not intermix the mediums and may thus discriminate among different fluid sources and destinations. One conduit may boil feedwater while another reheats steam for use in lower and higher-pressure turbines, respectively. Valves and other selectors divert steam and/or water into the steam generator or to other turbines or the environment for load balancing and other operational characteristics. Conduits circulate around an interior perimeter of the steam generator immersed in the primary medium and may have different cross-sections, radii, and internal structures depending on contained. A water conduit may have less flow area and a tighter coil radius. A steam conduit may include a swirler and rivulet stopper to intermix water in any steam flow.
Abstract:
A turbine engine comprising a compressor section and a turbine section in serial flow arrangement defining a working air flow path with a heat exchanger in fluid communication the working air flow path, and a nuclear fuel in thermal communication with the heat exchanger and a release valve in fluid communication with the working air flow path.
Abstract:
A drain recovery system for the condensate feedwater system of a nuclear power plant having condensate pumps for boosting the condensate from a condenser, and feedwater heaters for heating the condensate from the condensate pumps. The drain recovery system is provided with drain pumping-up recovery having a drain tank for storing a feedwater heater drain, and drain pumps connected to the drain tank for pumping up the drain therein to inject it into said condensate feedwater system at a predetermined portion thereof, and drain level control device having a conduit connected between a portion of the drain pumping-up recovery system upstream of the drain pumps and a portion of the condensate feedwater system upstream of the condensate pumps for causing the drain in the drain tank to be returned to the portion upstream of the condensate pumps by a pressure differential therebetween so as to maintain a drain level in the drain tank at a predetermined position when the plant operates at a low load level or the drain pumps malfunction.