Abstract:
A system and method for providing a position and orientation sensor package having a reduced size in at least one dimension is disclosed. The position and orientation sensor package includes a dielectric substrate and a first magneto-resistance sensor chip attached to the dielectric substrate, the first magneto-resistance sensor chip including at least one magneto-resistance sensor circuit. The position and orientation sensor package also includes a second magneto-resistance sensor chip attached to the dielectric substrate and positioned adjacent the first magneto-resistance sensor chip, the second magneto-resistance sensor chip including at least one magneto-resistance sensor circuit. The position and orientation sensor package is constructed such that the at least one magneto-resistance sensor circuit of the first magneto-resistance sensor chip is oriented in a different direction than the at least one magneto-resistance sensor circuit of the second magneto-resistance sensor chip.
Abstract:
An electronics package includes an insulating substrate, an electrical component having an active surface coupled to a first surface of the insulating substrate, and an insulating structure disposed adjacent the electrical component on the first surface of the insulating substrate. A first wiring layer is formed on a top surface of the insulating structure and extends down at least one sloped side surface of the insulating structure. A second wiring layer is formed on a second surface of the insulating substrate. The second wiring layer extends through a plurality of vias in the insulating substrate to electrically couple at least one contact pad on the active surface of the electrical component to the first wiring layer.
Abstract:
An electronics package includes an interconnect assembly comprising a first insulating substrate, a first wiring layer formed on a lower surface of the first insulating substrate, and at least one through hole extending through the first insulating substrate and the first wiring layer. The electronics package also includes an electrical component assembly comprising an electrical component having an active surface coupled to an upper surface of the first insulating substrate opposite the lower surface. The active surface of the electrical comprises at least one metallic contact pad. At least one conductive stud is coupled to the at least one metallic contact pad and is positioned within the at least one through hole. A conductive plug contacts the first wiring layer and extends into the at least one through hole to at least partially surround the at least one conductive stud.
Abstract:
An electronics package includes an insulating substrate, an electrical component having a back surface coupled to a first surface of the insulating substrate, and an insulating structure surrounding at least a portion of a perimeter of the electrical component. A first wiring layer extends from the first surface of the insulating substrate and over a sloped side surface of the insulating structure to electrically couple with at least one contact pad on an active surface of the electrical component. A second wiring layer is formed on a second surface of the insulating substrate and extends through at least one via therein to electrically couple with the first wiring layer.
Abstract:
An electronics package includes a support substrate, an electrical component having a first surface coupled to a first surface of the support substrate, and an insulating structure coupled to the first surface of the support substrate and sidewalls of the electrical component. The insulating structure has a sloped outer surface. A conductive layer encapsulates the electrical component and the sloped outer surface of the insulating structure. A first wiring layer is formed on a second surface of the support substrate. The first wiring layer is coupled to the conductive layer through at least one via in the support substrate.
Abstract:
A reconfigured semiconductor device includes a semiconductor device comprising an active surface having a plurality of input/output (I/O) pads spaced at a non-solderable pitch thereon and at least one redistribution layer overlying the active surface of the semiconductor device. Each at least one redistribution layer includes an insulating layer and a patterned conductive layer comprising a plurality of discrete terminal pads formed on the insulating layer, each of the plurality of discrete terminal pads electrically coupled to a respective I/O pad of the plurality of I/O pads by a conductive via formed through the insulating layer.
Abstract:
An electronics package includes a support substrate, an electrical component having a first surface coupled to a first surface of the support substrate, and an insulating structure coupled to the first surface of the support substrate and sidewalls of the electrical component. The insulating structure has a sloped outer surface. A conductive layer encapsulates the electrical component and the sloped outer surface of the insulating structure. A first wiring layer is formed on a second surface of the support substrate. The first wiring layer is coupled to the conductive layer through at least one via in the support substrate.
Abstract:
A system and method for providing a position and orientation sensor package having a reduced size in at least one dimension is disclosed. The position and orientation sensor package includes a dielectric substrate and a first magneto-resistance sensor chip attached to the dielectric substrate, the first magneto-resistance sensor chip including at least one magneto-resistance sensor circuit. The position and orientation sensor package also includes a second magneto-resistance sensor chip attached to the dielectric substrate and positioned adjacent the first magneto-resistance sensor chip, the second magneto-resistance sensor chip including at least one magneto-resistance sensor circuit. The position and orientation sensor package is constructed such that the at least one magneto-resistance sensor circuit of the first magneto-resistance sensor chip is oriented in a different direction than the at least one magneto-resistance sensor circuit of the second magneto-resistance sensor chip.
Abstract:
A filter package and method of manufacturing thereof is disclosed. The filter device package includes a first dielectric layer having an acoustic wave filter device attached thereto, the acoustic wave filter device comprising an active area and I/O pads. The filter device package also includes an adhesive positioned between the first dielectric layer and the acoustic wave filter device to secure the layer to the device, vias formed through the first dielectric layer and the adhesive to the I/O pads of the acoustic wave filter device, and metal interconnects formed in the vias and mechanically and electrically coupled to the I/O pads of the acoustic wave filter device to form electrical interconnections thereto, wherein an air cavity is formed in the adhesive between the acoustic wave filter device and the first dielectric layer, in a location adjacent the active area of the acoustic wave filter device.
Abstract:
Composite foams are provided including a metal template and a conformal atomic-scale film disposed over such metal template to form a 3-dimensional interconnected structure. The metal template includes a plurality of sintered interconnects, having a plurality of first non-spherical pores, a first non-spherical porosity, and a first surface-area-to-volume ratio. The conformal atomic-scale film has a plurality of second non-spherical pores, a second non-spherical porosity, and a second surface-area-to-volume ratio approximately equal to the first surface-area-to-volume ratio. The plurality of sintered interconnects has a plurality of dendritic particles and the conformal atomic-scale film includes at least one of a layer of graphene and a layer of hexagonal boron nitride.