Abstract:
An electric power system for a vehicle includes at least one electric machine, one or more power rectifiers, and a plurality of DC channels. The at least one electric machine includes a plurality of tooth-wound multi-phase windings that are substantially magnetically decoupled, and the at least one electric machine is mechanically balanced even if one of the plurality of windings is de-energized. The one or more power rectifiers are configured to produce rectified power from the power generated by the at least one electric machine. The plurality of DC channels are formed after the at least one power rectifier and are configured to provide DC power to one or more loads within a vehicle.
Abstract:
A power system including a power converter system and an electric machine is provided. In one aspect, the power converter system has first and second switching elements. The electric machine includes a first multiphase winding electrically coupled with the first switching elements and a second multiphase winding electrically coupled with the second switching elements. The first and second multiphase windings are arranged and configured to operate electrically opposite in phase with respect to one another. One or more processors control the first switching elements to generate first pulse width modulated (PWM) signals based on received voltage commands to render a first common mode signal and also control the second switching elements to generate second PWM signals based on received voltage commands to render a second common mode signal. The rendered first and second common mode signals have the same or similar waveform with opposite polarity with respect to one another.
Abstract:
An electric power system for a vehicle includes at least one electric machine, one or more power rectifiers, and a plurality of DC channels. The at least one electric machine includes a plurality of tooth-wound multi-phase windings that are substantially magnetically decoupled, and the at least one electric machine is mechanically balanced even if one of the plurality of windings is de-energized. The one or more power rectifiers are configured to produce rectified power from the power generated by the at least one electric machine. The plurality of DC channels are formed after the at least one power rectifier and are configured to provide DC power to one or more loads within a vehicle.
Abstract:
An electric power system for a vehicle includes at least one electric machine, one or more power rectifiers, and a plurality of DC channels. The at least one electric machine includes a plurality of tooth-wound multi-phase windings that are substantially magnetically decoupled, and the at least one electric machine is mechanically balanced even if one of the plurality of windings is de-energized. The one or more power rectifiers are configured to produce rectified power from the power generated by the at least one electric machine. The plurality of DC channels are formed after the at least one power rectifier and are configured to provide DC power to one or more loads within a vehicle.
Abstract:
A wind farm is presented. The wind farm includes a plurality of wind turbine stations, where each wind turbine station includes a wind turbine and a generator sub-system. The generator sub-system includes a doubly-fed induction generator configured to generate an alternating current voltage and a wind turbine station power converter. The wind farm further includes a power collection sub-system that includes a power bus and a sub-station power converter. The wind farm also includes a control system configured to determine a wind speed metric, estimate a corresponding frequency metric, calculate a desirable frequency based on the wind speed metric and frequency compensation ranges of the wind turbine station power converters, and generate and communicate control commands to the sub-station power converter based on the desirable frequency to allow the sub-station power converter to update a line frequency of a power bus voltage based on the desirable frequency.
Abstract:
An electrical system includes a power electronics system and a bus bar coupled to the power electronic system. The power electronics system includes a switching device configured to selectively connect and disconnect. The bus bar includes a first conductive layer and a second conductive layer. The first conductive layer is disposed directly adjacent a first insulation layer, wherein the first conductive layer is configured to conduct a first polarity of electrical power to, from, or both the power electronics system. The second conductive layer is disposed directly adjacent the first insulation layer, and is configured to conduct a second polarity of electrical power opposite the first polarity to, from, or both the power electronics system. The first conductive layer comprises a first thickness half a second thickness of the second conductive layer.
Abstract:
Power converters for use in wind turbine systems are included. For instance, a wind turbine system can include a wind driven doubly fed induction generator having a stator and a rotor. The stator is configured to provide a medium voltage alternating current power on a stator bus of the wind turbine system. The wind turbine system includes a power converter configured to convert a low voltage alternating current power provided by the rotor to a medium voltage multiphase alternating current output power suitable for provision to an electrical grid. The power converter includes a plurality conversion modules. Each conversion module includes a plurality of bridge circuits. Each bridge circuit includes a plurality of silicon carbide switching devices coupled in series. Each conversion module is configured to provide a single phase of the medium voltage multiphase alternating current output power on a line bus of the wind turbine system.
Abstract:
A method and system for a control circuit are provided. The circuit includes an integrating counter coupled to a process wherein the integrating counter is configured to integrate over time a process parameter signal received from the process and to generate a trigger signal when the integrated signal equals a predetermined count. The control circuit also includes a transition controller electrically coupled to a respective control element and configured to receive the trigger signal generated by the integrating counter.
Abstract:
A direct current (DC) transmission and distribution (T&D) system includes a plurality of DC-to-DC converter devices defining a plurality of isolatable portions of the DC T&D system. The DC T&D system also includes a DC T&D control system coupled to the DC-to-DC converter devices. The DC T&D control system includes a plurality of current sensors. At least one of the current sensors is positioned at one of the DC-to-DC converter devices. The current sensor is configured to transmit signals representative of a value of DC electric current transmission through the DC-to-DC converter device. The DC T&D control system also includes a plurality of processors. At least one processor is coupled to the current sensor and the DC-to-DC converter device. The processor is configured to regulate DC current transmission through the DC-to-DC converter device as a function of the value of DC current transmission through the DC-to-DC converter device.
Abstract translation:直流(DC)传输和分配(T&D)系统包括限定DC T&D系统的多个可隔离部分的多个DC-DC转换器装置。 DC T&D系统还包括耦合到DC-DC转换器设备的DC T&D控制系统。 DC T&D控制系统包括多个电流传感器。 至少一个电流传感器位于DC-DC转换器装置之一处。 电流传感器被配置为传送表示通过DC-DC转换器装置的DC电流传输的值的信号。 DC T&D控制系统还包括多个处理器。 至少一个处理器耦合到电流传感器和DC-DC转换器装置。 处理器被配置为根据通过DC-DC转换器装置的DC电流传输的值来调节通过DC-DC转换器装置的DC电流传输。
Abstract:
A high voltage direct current (HVDC) converter system includes a line commutated converter (LCC) configured to convert a plurality of AC voltages and currents to a regulated DC voltage of one of positive and negative polarity and a DC current transmitted in only one direction. The HVDC converter system also includes a buck converter configured to convert a plurality of AC voltages and currents to a regulated DC voltage of one of positive and negative polarity and a DC current transmitted in one of two directions. The LCC and the buck converter are coupled in parallel to an AC conduit and are coupled in series to a DC conduit. The HVDC converter system further includes a filtering device coupled in parallel to the buck converter through the AC conduit. The filtering device is configured to inject AC current having at least one harmonic frequency into the AC conduit.