Abstract:
The present disclosure is directed to systems and methods of selectively transmitting commands associated with a single channel. A trainable transceiver may include a channel, an electronic display, and a container element. The channel may be trained to control one or more functions of the remote device. The electronic display may display one or more container elements. The container element of the electronic display may include a first soft key and a second soft key. The container element may be associated with the channel. The first soft key may control a first function of the remote device. The second soft key may control a second function of the remote device.
Abstract:
A trainable transceiver for controlling a remote device includes a transceiver circuit configured, based on training information, to control the remote device, a communications device configured to communicate with a mobile communications device, an output device, and a control circuit coupled to the transceiver circuit, coupled to the communications device, and coupled to the output device. The control circuit is configured to receive notification information from the mobile communications device via the communications device, and wherein the control circuit is configured to generate an output using the output device based on the notification information.
Abstract:
A system for controlling a remote device including a trainable transceiver, communications electronics, and a processing circuit coupled to the trainable transceiver and the communications electronics. The processing circuit is configured to cause the trainable transceiver to control a remote device in response to a signal received from a cloud computing system, wherein the signal is received from the cloud computing system using the communications electronics.
Abstract:
A system for installation in a vehicle and for controlling a remote device includes a trainable transceiver and a remote button module. The trainable transceiver base station configured to be mounted in the vehicle at a first location and the remote button module separated from the base station and configured to be mounted in the vehicle at a second location. The remote button module is configured to wirelessly transmit a command signal to the base station in response to receiving a user input at a user input device, and the base station responds to receiving the command signal by transmitting an activation signal to the remote device, wherein the activation signal is formatted to control the remote device.
Abstract:
A system for installation in a vehicle and for controlling a remote device includes a camera, a trainable transceiver, and a control circuit coupled to the camera and the trainable transceiver. The control circuit is configured to use geographic location information to determine when to initiate a process of using the camera to identify the remote device and transmit an activation signal formatted to control the remote device. Upon initiation of the process, the control circuit is configured to use the camera to identify the remote device by comparing information received via the camera to information stored in memory, and wherein the control circuit is configured to automatically transmit an activation signal formatted to control the remote device, using the trainable transceiver, in response to identifying the remote device.
Abstract:
A wireless control system for wireless control of a remote electronic system is configured to provide information to a user using a multi-colored LED. The system includes a transmitter circuit configured to transmit a wireless control signal having control data which will control the remote electronic system, a multi-colored light emitting diode display configured to provide an indication of a state of the wireless control system, and a control circuit coupled to the trainable transmitter circuit configured to transmit the wireless control signal through the trainable transmitter circuit based on the state of the wireless control system.
Abstract:
A trainable transceiver for installation in a vehicle and for controlling a remote device includes a transceiver circuit configured, based on training information, to control the remote device, a communications device configured to communicate with a mobile communications device, an output device, and a control circuit coupled to the transceiver circuit, coupled to the communications device, and coupled to the output device. The control circuit is configured to receive notification information from the mobile communications device via the communications device, and wherein the control circuit is configured to generate an output using the output device based on the notification information.
Abstract:
A system for installation in a vehicle and for controlling a device, the system including a trainable transceiver, communications electronics, and a processing circuit coupled to the trainable transceiver and the communications electronics. The processing circuit is configured to train the trainable transceiver to control a device using information received from a cloud computing system remote from the device and vehicle via the communications electronics.
Abstract:
A control module for a remote device comprises a trainable transmitter configured to communicate a radio frequency signal configured to control the remote device via a first communication protocol. The control module further comprises a communication circuit configured to communicate with a mobile device via a second communication protocol and a user interface comprising at least one user input. The control module comprises a controller configured to communicate the programming information for the remote device with the remote server via the second communication interface and assign the programming information to the at least one user input. The controller is further configured to control the trainable transmitter to output a control signal based on the programming information in response to the at least one user input. The control signal is configured to control the remote device.
Abstract:
A configurable transmitter is provided for a vehicle for transmitting signals to a device remote from the vehicle. The configurable transmitter includes an RF transmitter that receives an RF signal during a training mode to learn characteristics of the received RF signal, and to transmit an RF signal to the remote device in an operating mode where the transmitted RF signal includes the learned characteristics of the received RF signal; a local memory device for storing channel data representing the learned characteristics and for storing a unique identification code and a cloud encryption key; an interface that communicates with an Internet server; and a controller coupled to the local memory device and the interface, the controller retrieves the channel data from the local memory device, encrypts the channel data using the cloud encryption key and transfers the encrypted channel data for remote storage in the Internet server through the interface.