Abstract:
Methods and structures for programmable device fabrication are provided. The methods for fabricating a programmable device include, for example forming at least one via opening in a layer of the programmable device and providing a catalyzing material over a lower surface of the at least one via opening; forming a plurality of nanowires or nanotubes in the at least one via opening using the catalyzing material as a catalyst for the forming of the plurality of nanowires or nanotubes; and providing a dielectric material in the at least one via opening so that the dielectric material surrounds the plurality of nanowires or nanotubes. The programmable device may, in subsequent or separate programming steps, have programming of the programmable device made permanent via thermal oxidation of the dielectric material and the plurality of nanowires or nanotubes, leaving a non-conducting material behind in the at least one via opening.
Abstract:
Semiconductor structures and fabrication methods are provided integrating different fin device architectures on a common wafer, for instance, within a common functional device area of the wafer. The method includes: facilitating fabricating multiple fin device architectures within a common functional device wafer area by: providing a wafer with at least one fin disposed over a substrate, the fin including an isolation layer; modifying the fin(s) in a first region of the fin(s), while protecting the fin in a second region of the fin(s); and proceeding with forming one or more fin devices of a first architectural type in the first region and one or more fin devices of a second architectural type in the second region. The first architectural type and the second architectural type are different fin device architectures, such as different fin device isolation architectures, different fin type transistor architectures, or different fin-type devices or structures.