Abstract:
A method of laser welding a workpiece stack-up (10) of overlapping steel workpieces (12, 14) involves heat-treating a region (64) of the stack-up (10) followed by forming a laser weld joint (66) that is located at least partially within the heat-treated region (64). During heat-treating, one or more pre-welding laser beams (68) are sequentially directed at a top surface (20) of the workpiece stack-up (10) and advanced along a pre-welding beam travel pattern (70) so as to reduce an amount of vaporizable zinc within the stack-up (10). Thereafter, the laser weld joint (66) is formed by directing a welding laser beam (82) at the top surface (20) of the workpiece stack-up (10) and advancing the welding laser beam (82) along a welding beam travel pattern (84) that at least partially overlaps with a coverage area of a pre-welding beam travel pattern (70) or a shared coverage area portion of multiple pre-welding beam travel patterns (70). The method can help reduce an amount of vaporizable zinc within the stack-up (10).
Abstract:
A method of laser welding a workpiece stack-up that includes two or three overlapping aluminum alloy workpieces involves constraining a free end of an overlapping portion of a first aluminum alloy workpiece against movement away from an underlying second aluminum alloy workpiece to counteract the thermally-induced forces that cause out-of-plane deformation of one or more of the aluminum alloy workpieces during laser welding. Such constraint of the free end of the first aluminum alloy workpiece may be accomplished by clamping, spot welding, or any other suitable practice. By constraining the free end of the first aluminum alloy workpiece, and thus inhibiting out-of-plane deformation of the aluminum alloy workpieces when laser welding is practiced in a nearby welding region, the occurrence of hot cracking is minimized or altogether eliminated in the final laser weld joint.
Abstract:
A method of spot welding a workpiece stack-up that includes a steel workpiece and an adjacent aluminum alloy workpiece involves passing an electrical current through the workpieces and between opposed welding electrodes. The formation of a weld joint between the adjacent steel and aluminum alloy workpieces is aided by a cover plate that is located between the aluminum alloy workpiece that lies adjacent to the steel workpiece and the welding electrode disposed on the same side of the workpiece stack-up. The cover plate, which includes an intruding feature, affects the flow pattern and density of the electrical current that passes through the adjacent steel and aluminum alloy workpieces in a way that helps improve the strength of the weld joint.
Abstract:
A method of spot welding a workpiece stack-up that includes a steel workpiece and an adjacent aluminum alloy workpiece involves passing an electrical current through the workpiece stack-up and between facially aligned welding electrodes in contact with opposed sides of the stack-up. The formation of a weld joint between the adjacent steel and aluminum alloy workpieces is aided by an intruding feature located in an aluminum alloy workpiece that provides and delineates one side of the workpiece stack-up and against which a welding electrode is pressed over the intruding feature at the weld site. The intruding feature affects the flow pattern and density of the electrical current that passes through the overlapping workpieces and is also believed to help minimize the effects of any refractory surface oxide layer(s) that may be present on the aluminum alloy workpiece that lies adjacent to the steel workpiece.