Abstract:
In a video capture system, a virtual lens is simulated when applying a crop or zoom effect to an input video. An input video frame is received from the input video that has a first field of view and an input lens distortion. A selection of a sub-frame representing a portion of the input video frame is obtained that has a second field of view smaller than the first field of view. The sub-frame is processed to remap the input lens distortion to a desired lens distortion in the sub-frame. The processed sub-frame is output.
Abstract:
In a video capture system, a virtual lens is simulated when applying a crop or zoom effect to an input video. An input video frame is received from the input video that has a first field of view and an input lens distortion caused by a lens used to capture the input video frame. A selection of a sub-frame representing a portion of the input video frame is obtained that has a second field of view smaller than the first field of view. The sub-frame is processed to remap the input lens distortion to a desired lens distortion in the sub-frame. The processed sub-frame is the outputted.
Abstract:
Apparatus and methods for stitching images, or re-stitching previously stitched images. Specifically, the disclosed systems in one implementation save stitching information and/or original overlap source data during an original stitching process. During subsequent retrieval, rendering, and/or display of the stitched images, the originally stitched image can be flexibly augmented, and/or re-stitched to improve the original stitch quality. Practical applications of the disclosed solutions enable, among other things, a user to create and stitch a wide field of view (FOV) panorama from multiple source images on a device with limited processing capability (such as a mobile phone or other capture device). Moreover, post-processing stitching allows for the user to convert from one image projection to another without fidelity loss (or with an acceptable level of loss).
Abstract:
In a video capture system, a virtual lens is simulated when applying a crop or zoom effect to an input video. An input video frame is received from the input video that has a first field of view and an input lens distortion caused by a lens used to capture the input video frame. A selection of a sub-frame representing a portion of the input video frame is obtained that has a second field of view smaller than the first field of view. The sub-frame is processed to remap the input lens distortion to a desired lens distortion in the sub-frame. The processed sub-frame is the outputted.
Abstract:
A system captures a first hemispherical image and a second hemispherical image, each hemispherical image including an overlap portion, the overlap portions capturing a same field of view, the two hemispherical images collectively comprising a spherical FOV and separated along a longitudinal plane. The system maps a modified first hemispherical image to a first portion of the 2D projection of a cubic image, the modified first hemispherical image including a non-overlap portion of the first hemispherical image, and maps a modified second hemispherical image to a second portion of the 2D projection of the cubic image, the modified second hemispherical image also including a non-overlap portion. The system maps the overlap portions of the first hemispherical image and the second hemispherical image to the 2D projection of the cubic image, and encodes the 2D projection of the cubic image to generate an encoded image representative of the spherical FOV.
Abstract:
In a video capture system, a virtual lens is simulated when applying a crop or zoom effect to an input video. An input video frame is received from the input video that has a first field of view and an input lens distortion caused by a lens used to capture the input video frame. A selection of a sub-frame representing a portion of the input video frame is obtained that has a second field of view smaller than the first field of view. The sub-frame is processed to remap the input lens distortion to a desired lens distortion in the sub-frame. The processed sub-frame is the outputted.
Abstract:
A spherical content capture system captures spherical video content. A spherical video sharing platform enables users to share the captured spherical content and enables users to access spherical content shared by other users. In one embodiment, captured metadata or video/audio processing is used to identify content relevant to a particular user based on time and location information. The platform can then generate an output video from one or more shared spherical content files relevant to the user. The output video may include a non-spherical reduced field of view such as those commonly associated with conventional camera systems. Particularly, relevant sub-frames having a reduced field of view may be extracted from each frame of spherical video to generate an output video that tracks a particular individual or object of interest.
Abstract:
A unified image processing algorithm results in better post-processing quality for combined images that are made up of multiple single-capture images. To ensure that each single-capture image is processed in the context of the entire combined image, the combined image is analyzed to determine portions of the image (referred to as “zones”) that should be processed with the same parameters for various image processing algorithms. These zones may be determined based on the content of the combined image. Alternatively, these zones may be determined based on the position of each single-capture image with respect to the entire combined image or the other single-capture images. Once zones and their corresponding image processing parameters are determined for the combined image, they are translated to corresponding zones each of the single-capture images. Finally, the image processing algorithms are applied to each of the single-capture images using the zone-specified parameters.
Abstract:
In a video capture system, a virtual lens is simulated when applying a crop or zoom effect to an input video. An input video frame is received from the input video that has a first field of view and an input lens distortion caused by a lens used to capture the input video frame. A selection of a sub-frame representing a portion of the input video frame is obtained that has a second field of view smaller than the first field of view. The sub-frame is processed to remap the input lens distortion to a desired lens distortion in the sub-frame. The processed sub-frame is the outputted.
Abstract:
Multiple cameras are arranged in an array at a pitch, roll, and yaw that allow the cameras to have adjacent fields of view such that each camera is pointed inward relative to the array. The read window of an image sensor of each camera in a multi-camera array can be adjusted to minimize the overlap between adjacent fields of view, to maximize the correlation within the overlapping portions of the fields of view, and to correct for manufacturing and assembly tolerances. Images from cameras in a multi-camera array with adjacent fields of view can be manipulated using low-power warping and cropping techniques, and can be taped together to form a final image.