Abstract:
Nitrated derivatives of aromatic compounds are obtained by contacting the latter, in the presence of methylene chloride as a reaction medium, with concentrated nitric acid in the presence of concentrated sulfuric acid, and thereafter isolating the formed nitro derivatives.
Abstract:
A polycarbonate such as aliphatic/aromatic polycarbonate comprises repeating structural carbonate units of the formula (H-1): in which Rh is a radical having the formula (H-2): wherein each of R11, R12, R13, R14, R15, R16, R17, R18, R19, R20, R21, R22, R23, R24, R25, R26, R27, and R28 is independently a hydrogen, a C1-C6 alkyl group, or a halogen substituted C1-C6 alkyl group. The polycarbonate, and a thermoplastic composition thereof, have improved thermal stability, cost-effectiveness, and exhibit improved manufacturability such as, for example, minimum cyclic carbonate formation and minimum amine acceptor requirement.
Abstract:
A method for purifying 1,1-bis(4′-hydroxy-3′-methylphenyl)cyclohexane comprises dissolving said 1,1-bis(4′-hydroxy-3′-methylphenyl)cyclohexane in a first solvent consisting essentially of an alcohol to form a first solution; filtering said first solution; adding a second solvent consisting essentially of water to the filtered first solution to form a second solution, wherein said second solution comprises about 40 parts to about 95 parts of the first solvent per 100 parts of the combined weight of the first and second solvents; crystallizing said 1,1-bis(4′-hydroxy-3′-methylphenyl) cyclohexane from said second solution to form a first crystalline product; dissolving said first crystalline product in a third solvent to form a third solution, wherein the third solvent comprises an aromatic compound; and crystallizing said 1,1-bis(4′-hydroxy-3′-methylphenyl)cyclohexane from said third solution to produce a second crystalline product.
Abstract:
Bisphosphine oxide monomers and homologs thereof may be incorporated into polycarbonates in order to obtain a flame retardant polymer. More particularly, bis[2,5-(diphenylphosphine oxide)]-1,4-hydroquinone and homologs thereof may be used to prepare flame retardant polycarbonates that retain high glass transition temperature and high impact resistances.
Abstract:
Novel flame retardant polycarbonates are prepared that maintain a T.sub.g and an impact strength similar to that of non-modified polycarbonates. More particular, phosphine oxide containing polycarbonates are prepared that demonstrate improved flame retardancy and the retention of impact strength and glass transition temperature.
Abstract:
Phenol-organopolysiloxane chainstoppers are phosgenated in combination with a bisphenol to make flame retardant organopolysiloxane-polycarbonate triblock copolymers. The phenol-organopolysiloxane chainstoppers can be made by effecting addition between an aliphatically unsaturated phenol and a silicon-hydride organopolysiloxane.
Abstract:
A method is provided for enhancing the production rate of arylhydroxylamines by moderated catalytic hydrogenation reactions. Small quantities of acid introduced to the reaction medium doubles the hydrogenation rate of nitroaromatic compounds without a significant loss in selectivity to arylhydroxylamines.
Abstract:
Aryl nitrones, of the type used in contrast enhancement photolithography techniques, are stabilized by adding thereto a drying agent such as molecular sieve, silica gel or an alkylalkoxysilane. The resulting compositions are substantially storage stable.
Abstract:
A method is provided for making integrated circuit silicon composite die having a hot melt adhesive on the surface of its silicon base. An integrated circuit silicon wafer silicon composite die in wafer form is diced after a hot melt adhesive has been applied onto its silicon base utilizing a spin coating procedure. Integrated circuit silicon composite arrays are also provided by integrally bonding the integrated circuit silicon die onto a carrier substrate.
Abstract:
There is provided a photosensitive modified silicone-aromatic polyamide acid convertible to a patterned silicone-polyimide. A silicone-polyamide acid is modified with an isocyanatoalkylacrylate to produce a silicone-aromatic polyamide acid having acrylate alkylamide groups attached to the silicone-aromatic polyamide acid backbone by nitrogen-nuclear bound carbon linkages.