摘要:
A controller at a distribution point (DP) of a communication system is coupled to a plurality of customer premises (CP) transceivers via drop connections. The controller is configured to schedule upstream and downstream data transmissions across the drop connections such that they do not overlap from one drop connection to another thereby avoiding the effects of crosstalk. A flexible frame structure is used to permit dynamic scheduling changes. Overhead for the flexible frame structure is permitted to overlap on the drop connections, and a reduced bit loading is used to communicate the overhead relative to the bit loading used for data transmissions.
摘要:
A communication system has a trunk extending from a network facility, such as a central office, with a plurality of distribution points positioned along the trunk. Each leg of the trunk defines a shared channel that permits peak data rates much greater than what would be achievable without channel sharing. As an example, the connections of each respective trunk leg may be bonded. Further, the same modulation format and crosstalk vectoring are used for each leg of the trunk. The crosstalk vectoring cancels both far-end crosstalk (FEXT) that couples between connections of a given trunk leg and crossover crosstalk that couples between one trunk leg and another. In addition, logic determines an amount of excess capacity available for each leg of the trunk and controls error correction based on the determined excess capacity.
摘要:
A communication system comprises a plurality of line cards having transceivers coupled to a plurality of subscriber lines. Each line card has at least one active transceiver within the same vectoring group, and each line card also has vector logic capable of cancelling crosstalk induced by an active transceiver that is a member of the vectoring group. Further, the line cards are coupled to one another via a ring connection across which vectoring information is passed from one line card to the next. In the event of a failure of one of the line cards, the failed card is bypassed by the vectoring stream so that the operational line cards can continue crosstalk vectoring operations despite such failure.
摘要:
A discrete multi-tone (DMT) transceiver communicates tones across a subscriber line. Vectoring is employed in an effort to reduce the effects of crosstalk. However, for some tones, such as tones significantly affected by radio frequency interference (RFI) or other forms of alien noise, vectoring may actually introduce distortions such that the vectoring degrades rather than improves overall signal quality. Control logic of the DMT transceiver is configured to sense when tones are affected by significant levels of alien noise and to exclude such tones from vectoring, thereby improving signal quality for such tones. The control logic also may lower the constellation densities of such tones in order to accommodate the vectoring exclusions applied to such tones.
摘要:
A system for adaptively updating precoder taps comprises a first signal path, a second signal path, a delay mechanism, and logic. The first signal path is configured to receive encoded signals. The first signal path has a decoder that is configured to decode the encoded signals thereby recovering data originally transmitted from a remote transmitter. The delay mechanism is configured to receive and delay the encoded signals. The second signal path is connected in parallel with the first signal path and is configured to receive the encoded signals delayed by the delay mechanism. The second signal path has an adaptive filter configured to filter the encoded signals received by the second signal path based on a set of coefficients of the adaptive filter. The adaptive filter is configured to adaptively update the coefficients based on the data recovered by the first signal path. The logic is configured to adaptively generate new precoder taps based on the coefficients and to transmit the new precoder taps to a precoder.
摘要:
The present disclosure generally pertains to systems and methods for communicating data. In one exemplary embodiment, a system has a high-speed channel, such as an optical fiber, between a network facility, such as a central office (CO), and a first intermediate point between the network facility and a plurality of customer premises (CP). Digital communication links, such as DSL links, are used to carry data between the first intermediate point, such as a feeder distribution interface (FDI), and a second intermediate point, such as the Distribution Point (DP). Non-shared links may then carry the data from the second intermediate point to the CPs. The links between the two intermediate points are bonded to create a high-speed, shared data channel that permits peak data rates much greater than what would be achievable without bonding. In some embodiments, multicast data flows may be prioritized and transmitted across a set of connections to each of the intermediate points. In addition, it is possible to power components at the intermediate points from one or more of the CPs.
摘要:
A communication system has a trunk extending from a network facility, such as a central office, with a plurality of distribution points positioned along the trunk. Each leg of the trunk defines a shared channel that permits peak data rates much greater than what would be achievable without channel sharing. As an example, the connections of each respective trunk leg may be bonded. Further, the same modulation format and crosstalk vectoring are used for each leg of the trunk. The crosstalk vectoring cancels both far-end crosstalk (FEXT) that couples between connections of a given trunk leg and crossover crosstalk that couples between one trunk leg and another. In addition, logic determines an amount of excess capacity available for each leg of the trunk and controls error correction based on the determined excess capacity.
摘要:
A communication system comprises a plurality of line cards having transceivers coupled to a plurality of subscriber lines. Each line card has at least one active transceiver within the same vectoring group, and each line card also has vector logic capable of cancelling crosstalk induced by an active transceiver that is a member of the vectoring group. In the event of a vectoring fault that prevents a line card from receiving vectoring information from at least on other line card, the vector logic is configured to disable vectoring for the interferers affected by the error in order to prevent vectoring operations based on obsolete vectoring coefficients from adversely affecting the quality of the communicated signals. The transceivers communicating signals affected by the suspended vectoring operations are also configured to adjust their constellation density profiles, thereby reducing their data rates, to accommodate the increased noise level resulting from the loss of vectoring. By handling the vectoring fault in such manner, communication can continue without requiring a retrain.
摘要:
A discrete multi-tone (DMT) transceiver communicates tones across a subscriber line. Vectoring is employed in an effort to reduce the effects of crosstalk. However, for some tones, such as tones significantly affected by radio frequency interference (RFI) or other forms of alien noise, vectoring may actually introduce distortions such that the vectoring degrades rather than improves overall signal quality. Control logic of the DMT transceiver is configured to sense when tones are affected by significant levels of alien noise and to exclude such tones from vectoring, thereby improving signal quality for such tones. The control logic also may lower the constellation densities of such tones in order to accommodate the vectoring exclusions applied to such tones.
摘要:
A communication system comprises a plurality of line cards having transceivers coupled to a plurality of subscriber lines. Each line card has at least one transceiver within the same vectoring group, and each line card also has vector logic capable of cancelling crosstalk induced by a tone communicated by any member of the vector group. Further, the line cards are coupled to one another via a data connection across which a vectoring stream carrying vectoring information from one line card to the next. The bandwidth of the vectoring stream is reduced by dynamically adjusting time slots of the vectoring stream based on bit loading for the communicated tones.