Abstract:
An audio capture device selects between multiple microphones to generate an output audio signal depending on detected conditions. When the presence of wind noise or other uncorrelated noise is detected, the audio capture device selects, for each of a plurality of different frequency sub-bands, an audio signal having the lowest noise and combines the selected frequency sub-bands signals to generate an output audio signal. When wind noise or other uncorrelated noise is not detected, the audio capture device determines whether each of a plurality of microphones are wet or dry and selects one or more audio signals from the microphones depending on their respective conditions.
Abstract:
An audio capture system for a sports camera includes at least one “enhanced” microphone and at least one “reference” microphone. The enhanced microphone includes a drainage enhancement feature to enable water to drain from the microphone more quickly than the reference microphone. A microphone selection controller selects between the microphones based on a microphone selection algorithm to enable high quality in conditions where the sports camera transitions in and out of water during activities such as surfing, water skiing, swimming, or other wet environments.
Abstract:
An audio capture device selects between multiple microphones to generate an output audio signal depending on detected conditions. The audio capture device determines whether one or more microphones are wet or dry and selects one or more audio signals from the one or more microphones depending on their respective conditions. The audio capture device generates a mono audio output signal or a stereo output signal depending on the respective conditions of the one or more microphones.
Abstract:
An audio capture device selects between multiple microphones to generate an output audio signal depending on detected conditions. The audio capture device determines whether one or more microphones are wet or dry and selects one or more audio signals from the one or more microphones depending on their respective conditions. The audio capture device generates a mono audio output signal or a stereo output signal depending on the respective conditions of the one or more microphones.
Abstract:
An audio capture system for a sports camera includes at least one “enhanced” microphone and at least one “reference” microphone. The enhanced microphone includes a drainage enhancement feature to enable water to drain from the microphone more quickly than the reference microphone. A microphone selection controller selects between the microphones based on a microphone selection algorithm to enable high quality in conditions where the sports camera transitions in and out of water during activities such as surfing, water skiing, swimming, or other wet environments.
Abstract:
A camera system capable of capturing images of an event in a dynamic environment includes two microphones configured to capture stereo audio of the event. The microphones are on orthogonal surfaces of the camera system. Because the microphones are on orthogonal surfaces of the camera system, the camera body can impact the spatial response of the two recorded audio channels differently, leading to degraded stereo recreation if standard beam forming techniques are used. The camera system includes tuned beam forming techniques to generate multi-channel audio that more accurately recreates the stereo audio by compensating for the shape of the camera system and the orientation of microphones on the camera system. The tuned beam forming techniques include optimizing a set of beam forming parameters, as a function of frequency, based on the true spatial response of the recorded audio signals.
Abstract:
An audio capture system for a sports camera includes at least one “enhanced” microphone and at least one “reference” microphone. The enhanced microphone includes a drainage enhancement feature to enable water to drain from the microphone more quickly than the reference microphone. A microphone selection controller selects between the microphones based on a microphone selection algorithm to enable high quality in conditions where the sports camera transitions in and out of water during activities such as surfing, water skiing, swimming, or other wet environments.
Abstract:
An audio capture system for a sports camera includes at least one “enhanced” microphone and at least one “reference” microphone. The enhanced microphone includes a drainage enhancement feature to enable water to drain from the microphone more quickly than the reference microphone. A microphone selection controller selects between the microphones based on a microphone selection algorithm to enable high quality in conditions where the sports camera transitions in and out of water during activities such as surfing, water skiing, swimming, or other wet environments.