Abstract:
Methods and systems for interacting with multiple three-dimensional (3D) object data models are provided. An example method may involve providing to a display device for display a first 3D object data model and a second 3D object data model. Information associated with a modification to the first 3D object data model may be received. Based on the received information, a same change may be applied to the first 3D object data model and applied to the second 3D object data model to obtain a first modified 3D object data model and a second modified 3D object data model. According to the method, the first modified 3D object data model and the second modified 3D object data model may be provided to the display device for substantially simultaneous display.
Abstract:
Techniques of displaying a virtual environment in a HMD involve generating a lighting scheme within a virtual environment configured to reveal a real object in a room in the virtual environment in response to a distance between a user in the room and the real object decreasing while the user is immersed in the virtual environment. Such a lighting scheme protects a user from injury resulting from collision with real objects in a room while immersed in a virtual environment.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for sharing digital media with a space. One of the methods includes receiving a request from a first user to provide digital media for presentation in a first physical space, the request identifying the digital media and a group of authorized users allowed to view the digital media. Sensors in the first space identify the authorized users located in the first physical space. That only authorized users can view the digital media is determined from the sensors. The digital media is provided for presentation in the first physical space while determining that only authorized users can view the digital media.
Abstract:
An example method includes providing for display on an interface of a cursor comprising a geometric representation with two opposing flaps connected to a perimeter of the geometric representation. The method may further include receiving input data from a motion controller indicative of translation of a view of the interface in a direction parallel to the view. The method may also include responsively providing for animation of the two opposing flaps of the cursor to rotate the two opposing flaps about the perimeter of the geometric representation on the interface in a direction opposite the translation.
Abstract:
Methods and systems for determining the shape of an object based on shadows cast by the object are described. An example method may include receiving a plurality of images of an object casting a shadow. Each image may include a shadow cast by the object as the object is illuminated by a light source that moves over a plurality of positions. The method may further include determining, by a computing device, respectively for each image of the plurality of images a two-dimensional (2D) silhouette of the object and a respective position of the light source relative to the object. According to the method, a three-dimensional (3D) object data model of the object may be generated by the computing device based on the 2D silhouette of the object and the respective position of the light source relative to the object for each image of the plurality of images.
Abstract:
Methods and systems for providing a preloader animation for image viewers is provided. An example method includes receiving an image of an object, determining an edge gradient value for pixels of the image, and selecting pixels representative of the object that have a respective edge gradient value above a threshold. The example method also includes determining a model of the object including an approximate outline of the object and structures internal to the outline that are oriented based on the selected pixels being coupling points between the structures, and providing instructions to display the model in an incremental manner so as to render given structures of the model over time.
Abstract:
Methods and systems for selecting a velocity profile for controlling a robotic device are provided. An example method includes receiving via an interface a selection of a robotic device to control, and receiving via the interface a request to modify a velocity profile of the robotic device. The velocity profile may include information associated with changes in velocity of the robotic device over time. The method may further include receiving a selected velocity profile, receiving an input via the interface, and determining a velocity command based on the selected velocity profile and the input. In this manner, changes in velocity of the robotic device may be filtered according to a velocity profile selected via the interface.
Abstract:
Methods and systems for modifying a display of a field of view of a robotic device to include zoomed-in and zoomed-out views are provided. In examples, the robotic device may include a camera to capture images in a field of view of a robotic device, and distance sensors which can provide outputs that may be used to determine a distance of the robotic device to an object in the field of view of the robotic device. A display of the field of view of the robotic device can be generated, and as the distance decreases, the display can be modified to include a zoomed-in view of the object. As the distance increases, the display can be modified to include a zoomed-out view of the object. An amount of zoom of the object may be inversely proportional to the distance.
Abstract:
Methods and systems for image marking and generation of a three-dimensional (3D) image of an object are described. In an example, a computing device may be configured to receive a first set of images of an object that capture details of the object. The computing device may also be configured to receive a second set of images that include markings projected on the object and that are indexed to correspond to images of the first set of images. The computing device may be configured to spatially align images of the second set of images based on the markings projected on the object and determine respective images of the first set of images corresponding to spatially aligned images of the second set of images. The computing device may then generate a 3D image of the object from the respective images of the first set of images.