Abstract:
Techniques of generating a virtual environment in a virtual reality system involves changing, within a user interface of the second user, an attribute of an avatar representing the first user while maintaining a spatial position of an object with which the first user is interacting. In this way, the second user may see only non-threatening or otherwise pleasant avatars within their user interface while other users may not perceive any change to the virtual environment as displayed in their respective user interfaces.
Abstract:
Systems and methods are described that are configured to obtain tracking data corresponding to a plurality of users accessing a virtual reality environment. The tracking data may include information associated with a plurality of movements performed by a first user in a physical environment. The systems and methods may be configured to modify display data associated with the plurality of movements, in response to determining that the information is private, and provide, in the virtual environment, the modified display data to a second user in the plurality of users, while displaying unmodified display data to the first user.
Abstract:
Methods and apparatus to use predicted actions in VR environments are disclosed. An example method includes predicting a predicted time of a predicted virtual contact of a virtual reality controller with a virtual musical instrument, determining, based on at least one parameter of the predicted virtual contact, a characteristic of a virtual sound the musical instrument would make in response to the virtual contact, and initiating producing the sound before the predicted time of the virtual contact of the controller with the musical instrument.
Abstract:
Systems and methods are described that include generating a virtual environment for display in a head-mounted display device. The virtual environment may include at least one three-dimensional virtual object having a plurality of volumetric zones configured to receive virtual contact. The method may also include detecting a plurality of inputs corresponding to a plurality of actions performed in the virtual environment on the at least one three-dimensional virtual object. Each action corresponds to a plurality of positions and orientations associated with at least one tracked input device. The method may include generating, for each action and while detecting the plurality of inputs, a plurality of prediction models and determining based on the plurality of prediction models in which of the plurality of volumetric zones the at least one tracked input device is predicted to virtually collide.
Abstract:
Aspects of the present disclosure relate switching between autonomous and manual driving modes. In order to do so, the vehicle's computer may conduct a series of environmental, system, and driver checks to identify certain conditions. The computer may correct some of these conditions and also provide a driver with a checklist of tasks for completion. Once the tasks have been completed and the conditions are changed, the computer may allow the driver to switch from the manual to the autonomous driving mode. The computer may also make a determination, under certain conditions, that it would be detrimental to the driver's safety or comfort to make a switch from the autonomous driving mode to the manual driving mode.
Abstract:
In one general aspect, a system for providing a virtual reality (VR) space can include a mobile computing device, and a VR headset operatively coupled to the mobile computing device and including a screen. The mobile computing device can be configured to execute a VR application, and provide content for display on the screen of the VR headset in the VR space.
Abstract:
Aspects of the present disclosure relate switching between autonomous and manual driving modes. In order to do so, the vehicle's computer may conduct a series of environmental, system, and driver checks to identify certain conditions. The computer may correct some of these conditions and also provide a driver with a checklist of tasks for completion. Once the tasks have been completed and the conditions are changed, the computer may allow the driver to switch from the manual to the autonomous driving mode. The computer may also make a determination, under certain conditions, that it would be detrimental to the driver's safety or comfort to make a switch from the autonomous driving mode to the manual driving mode.