Abstract:
A method for filtering a digital image, comprising segmenting the digital image into a plurality of tiles; computing tile histograms corresponding to each of the plurality of tiles; deriving a plurality of tile transfer functions from the tile histograms preferably using 1D convolutions; interpolating a tile transfer function from the plurality of tile transfer functions; and filtering the digital image with the interpolated tile transfer function. Many filters otherwise difficult to conceive or to implement are possible with this method, including an edge-preserving smoothing filter, HDR tone mapping, edge invariant gradient or entropy detection, image upsampling, and mapping coarse data to fine data.
Abstract:
A method for distorting a digital image comprising receiving the coordinates of one or more than one image reference point defined by a user within the digital image, receiving one or more than one spatial offset assigned by the user and associated with the coordinates of the one or more than one defined image reference point, providing a mixing function algorithm embodied on a computer-readable medium for distorting the digital image, calculating an offset matrix by applying the mixing function algorithm based on the one or more than one spatial offset and the coordinates of the one or more than one defined image reference point; and distorting the digital image by application of the offset matrix. A graphic tag may be associated with each of the defined image reference points and displayed over the digital image, and the assignment of the spatial offset may be accomplished by movement of the graphic tag with the pointing device. Abstract image reference points may be used to limit distortion.
Abstract:
A computer system for a narrational media organizer for transforming digital media into a personal, memorable story with minimal user input having a processor and storage with instructions for creating a narrational media organizer (NMO) environment, where a user can annotate one or more than one digital media file or graphical representations of the digital media files using a user interface; and an NMO data structure for storing the digital media and annotations of the NMO environment.
Abstract:
Implementations generally relate to applying image enhancements. In some implementations, a method includes providing a selection of image enhancements to a user. The method also includes causing the image enhancements to be displayed as a collection of icons, where the collection includes icons representing different image enhancements, and where one or more of the image enhancements are applied to one or more images. The method also includes enabling the user to select any icon in the collection in order to modify the collection, where the selected icon has a corresponding selected image enhancement. The method also includes hiding icons associated with image enhancements that are subsequent image enhancements relative to the selected image enhancement. The method also includes deactivating the subsequent image enhancements corresponding to the hidden icons.
Abstract:
A method for filtering a digital image, comprising segmenting the digital image into a plurality of tiles; computing tile histograms corresponding to each of the plurality of tiles; deriving a plurality of tile transfer functions from the tile histograms preferably using 1D convolutions; interpolating a tile transfer function from the plurality of tile transfer functions; and filtering the digital image with the interpolated tile transfer function. Many filters otherwise difficult to conceive or to implement are possible with this method, including an edge-preserving smoothing filter, HDR tone mapping, edge invariant gradient or entropy detection, image upsampling, and mapping coarse data to fine data.
Abstract:
A method of displaying a high dynamic range image, comprising receiving the high dynamic range image, calculating a first set of tone mapping parameters as a function of the high dynamic range image, sub-sampling the first set of tone mapping parameters at a first resolution to create a first sub-sampled parameter set, creating a first tone-mapped image by processing the high dynamic range image as a function of the first sub-sampled parameter set, and displaying the first tone-mapped image. A method of composting a plurality of versions of an image to create the high dynamic range image is also disclosed such that the compositing may be modified as a function of received user input.
Abstract:
Systems, methods and computer readable media for two-dimensional image processing based on third dimension data are described. Some implementations can include a method comprising obtaining first image data having a plurality of pixel values and obtaining second image data corresponding to each pixel value in the first image data. The method can also include receiving an indication of one or more control points in the first image data. The method can further include selectively filtering the first image data based on a distance from the control point and on one or more data values in the second image data corresponding to the corresponding control point. The method can also include outputting the selectively filtered first image data.
Abstract:
A method of displaying a high dynamic range image, comprising receiving the high dynamic range image, calculating a first set of tone mapping parameters as a function of the high dynamic range image, sub-sampling the first set of tone mapping parameters at a first resolution to create a first sub-sampled parameter set, creating a first tone-mapped image by processing the high dynamic range image as a function of the first sub-sampled parameter set, and displaying the first tone-mapped image. A method of composting a plurality of versions of an image to create the high dynamic range image is also disclosed such that the compositing may be modified as a function of received user input.
Abstract:
A method for distorting a digital image comprising receiving the coordinates of one or more than one image reference point defined by a user within the digital image, receiving one or more than one spatial offset assigned by the user and associated with the coordinates of the one or more than one defined image reference point, providing a mixing function algorithm embodied on a computer-readable medium for distorting the digital image, calculating an offset matrix by applying the mixing function algorithm based on the one or more than one spatial offset and the coordinates of the one or more than one defined image reference point; and distorting the digital image by application of the offset matrix. A graphic tag may be associated with each of the defined image reference points and displayed over the digital image, and the assignment of the spatial offset may be accomplished by movement of the graphic tag with the pointing device. Abstract image reference points may be used to limit distortion.
Abstract:
A method of displaying a high dynamic range image, comprising receiving the high dynamic range image, calculating a first set of tone mapping parameters as a function of the high dynamic range image, sub-sampling the first set of tone mapping parameters at a first resolution to create a first sub-sampled parameter set, creating a first tone-mapped image by processing the high dynamic range image as a function of the first sub-sampled parameter set, and displaying the first tone-mapped image. A method of composting a plurality of versions of an image to create the high dynamic range image is also disclosed such that the compositing may be modified as a function of received user input.