Abstract:
Aspects of the disclosure relate generally to generating depth data from a video. As an example, one or more computing devices may receive an initialization request for a still image capture mode. After receiving the request to initialize the still image capture mode, the one or more computing devices may automatically begin to capture a video including a plurality of image frames. The one or more computing devices track features between a first image frame of the video and each of the other image frames of the video. Points corresponding to the tracked features may be generated by the one or more computing devices using a set of assumptions. The assumptions may include a first assumption that there is no rotation and a second assumption that there is no translation. The one or more computing devices then generate a depth map based at least in part on the points.
Abstract:
Systems and methods for generating depth data from images captured by a camera-enabled mobile device are provided. The depth data can be used to refocus one or more portions of an image captured by the camera-enabled mobile device. A user can select different portions of the captured image to bring different portions of the image into focus and out of focus. Depth data for an image can be generated from a reference image and a sequence of images captured by the image capture device. The sequences of images can be acquired using a suitable camera motion. A refocused image can be generated with portions of the image out of focus relative to the reference image.
Abstract:
Systems and methods for aligning ground based images of a geographic area taken from a perspective at or near ground level and a set of aerial images taken from, for instance, an oblique perspective, are provided. More specifically, candidate aerial imagery can be identified for alignment with the ground based image. Geometric data associated with the ground based image can be obtained and used to warp the ground based image to a perspective associated with the candidate aerial imagery. One or more feature matches between the warped image and the candidate aerial imagery can then be identified using a feature matching technique. The matched features can be used to align the ground based image with the candidate aerial imagery.
Abstract:
Systems and methods for capturing omnistereo content for a mobile device may include receiving an indication to capture a plurality of images of a scene, capturing the plurality of images using a camera associated with a mobile device and displaying on a screen of the mobile device and during capture, a representation of the plurality of images and presenting a composite image that includes a target capture path and an indicator that provides alignment information corresponding to a source capture path associated with the mobile device during capture of the plurality of images. The system may detect that a portion of the source capture path does not match a target capture path. The system can provide an updated indicator in the screen that may include a prompt to a user of the mobile device to adjust the mobile device to align the source capture path with the target capture path.
Abstract:
Methods, systems, and articles of manufacture for generating a panoramic image of a long scene, are disclosed. These include, fitting a plurality of planes to 3D points associated with input images of portions of the long scene, where one or more respective planes are fitted to each of a ground surface, a dominant surface, and at least one of one or more foreground objects and one or more background objects in the long scene, and where distances from the 3D points to the fitted planes are substantially minimized. These also include, selecting, for respective one or more pixels in the panoramic image of the long scene, one of the input images and one of the fitted planes such that a distance is substantially minimized from the selected one of the fitted planes to a surface corresponding to the respective one or more pixels and occlusion of the respective one or more pixels is reduced in the selected one of the input images; and stitching the panoramic image of the long scene by projecting, for the respective one or more pixels in the panoramic image of the long scene, the selected one of the input images using the selected one of the fitted planes into the virtual camera.
Abstract:
Systems and methods are related to a camera rig and generating stereoscopic panoramas from captured images for display in a virtual reality (VR) environment.
Abstract:
A system and method is provided for determining whether images of a geographic location identify features with characteristics consistent with shadows cast by people, and using such determination to annotate map information. If such features are identified at the location, the map may be annotated to indicate that the location is frequented by pedestrians.
Abstract:
An exemplary method includes prompting a user to capture video data at a location. The location is associated with navigation directions for the user. Information representing visual orientation and positioning information associated with the captured video data is received by one or more computing devices, and a stored data model representing a 3D geometry depicting objects associated with the location is accessed. Between corresponding images from the captured video data and projections of the 3D geometry, one or more candidate change regions are detected. Each candidate change region indicates an area of visual difference between the captured video data and projections. When it is detected that a count of the one or more candidate change regions is below a threshold, the stored model data is updated with at least part of the captured video data based on the visual orientation and positioning information associated with the captured video data.
Abstract:
Systems and methods for browsing images of points of interest (POIs) are provided. Indication of selection of POI from among multiple POIs is received. Image graph associated with POI is identified. Image graph includes multiple images of POI. Tour path for POI is defined within image graph. Specific image from tour path defined within image graph is provided for display. Previous image and next image relative to specific image along tour path defined within image graph are determined. First set of additional images from image graph based on specific image is determined. First set of additional images corresponds to set of images in image graph proximate to specific image. Link to previous image or next image, and link to each member of first set of additional images for display with specific image are provided.
Abstract:
An exemplary method for navigating among photos includes determining, using one or more computing devices, visual characteristics of a person depicted in a first image associated with a first location. These visual characteristics of the person are detected in a second image associated with a second location. Using the one or more computing devices, a series of intermediate images are identified based on the first location and the second location. Each intermediate image is associated with a location. The series of intermediate images and the second image are provided. Images of an intermediate destination from the series of intermediate images are selected based on a density of images at the intermediate destination. A 3D reconstruction of the intermediate destination is then generated based on the selected images. Thereafter, a visual presentation of images traversing through the 3D reconstruction of the intermediate destination to the second image is prepared for display.