Abstract:
A wet tantalum capacitor of either a single anode design or of multiple anode configurations having cathode active material supported on the casing and sealed in its own separator material is described. The separator “covers' the cathode active material and is adhered directly to the casing. For a multiple anode design, an inner cathode foil positioned between opposed anode pellets is sealed in its own separator bag. Preferably, a polymeric restraining device prevents the anode from contacting the casing. The completed anode/cathode electrode assembly is sealed in the casing, which is filled with electrolyte thru a port. The fill port is hermetically sealed to complete the capacitor.
Abstract:
An implantable cardioverter defibrillator includes a communication interface operable to receive a communication signal from an external programmer. The communication signal includes a command to switch the ICD from a first mode to a second mode. A processor is in electrical communication with the communication interface and configured to switch the ICD between the first and second modes. A battery is configured to supply low DC voltage. A converter is configured to convert the low DC voltage to a high DC voltage. An energy storage capacitor is electrically coupled to the converter and configured to store a therapeutic energy or high DC voltage including at least 15 joules. The second mode includes activating the converter to convert the low DC voltage to the high DC voltage and storing the therapeutic energy or at least 15 joules within the energy storage capacitor during a period of time of the second mode.
Abstract:
Deep brain electrodes are remotely sensed and activated by means of a remote active implantable medical device (AIMD). In a preferred form, a pulse generator is implanted in the pectoral region and includes a hermetic seal through which protrudes a conductive leadwire which provides an external antenna for transmission and reception of radio frequency (RF) pulses. One or more deep brain electrode modules are constructed and placed which can transmit and receive RF energy from the pulse generator. An RF telemetry link is established between the implanted pulse generator and the deep brain electrode assemblies. The satellite modules are configured for generating pacing pulses for a variety of disease conditions, including epileptic seizures, Turrets Syndrome, Parkinson's Tremor, and a variety of other neurological or brain disorders.