Abstract:
A wet tantalum electrolytic capacitor containing a cathode, fluidic working electrolyte, and anode formed from an anodically oxidized sintered porous tantalum pellet is described. The pellet is formed from a pressed tantalum powder. The tantalum powder is formed by reacting a tantalum oxide compound, for example, tantalum pentoxide, with a reducing agent that contains a metal having an oxidation state of 2 or more, for example, magnesium. The resulting tantalum powder is nodular or angular and has a specific charge that ranges from about 9,000 μF*V/g to about 11,000 μF*V/g. Using this powder, wet tantalum electrolytic capacitors have breakdown voltages that ranges from about 340 volts to about 450 volts. This makes the electrolytic capacitors ideal for use in an implantable medical device.
Abstract:
A capacitor having at least two side-by-side anodes with a cathode current collector disposed between the anodes and housed inside a casing is described. Cathode active material is supported on the opposed major faces of the current collector and the current collector/cathode active material subassembly is housed in a first separator envelope. The first separator envelope is positioned between the side-by-side anodes and this electrode assembly is then contained in a second separator envelope. The two anodes can be connected in parallel inside or outside casing, or they can be unconnected to each other. There is also cathode active material supported on inner surfaces of the casing in a face-to-face alignment with an adjacent one of the anodes. That way, the second separator envelope also prevents direct physical contact between the anode pellets and the cathode active material supported on the casing sidewalls.
Abstract:
Tantalum powders produced using a tantalum fiber precursor are described. The tantalum fiber precursor is chopped or cut into short lengths having a uniform fiber thickness and favorable aspect ratio. The chopped fibers are formed into a primary powder having a controlled size and shape, narrow/tight particle size distribution, and low impurity level. The primary powder is then agglomerated into an agglomerated powder displaying suitable flowability and pressability such that pellets with good structural integrity and uniform pellet porosity are manufacturable. The pellet is sintered and anodized to a desired formation voltage. The thusly created capacitor anode has a dual morphology or dual porosity provided by a primary porosity of the individual tantalum fibers making up the primary powder and a larger secondary porosity formed between the primary powders agglomerated into the agglomerated powder.
Abstract:
Tantalum powders produced using a tantalum fiber precursor are described. The tantalum fiber precursor is chopped or cut into short lengths having a uniform fiber thickness and favorable aspect ratio. The chopped fibers are formed into a primary powder having a controlled size and shape, narrow/tight particle size distribution, and low impurity level. The primary powder is then agglomerated into an agglomerated powder displaying suitable flowability and pressability such that pellets with good structural integrity and uniform pellet porosity are manufacturable. The pellet is sintered and anodized to a desired formation voltage. The thusly created capacitor anode has a dual morphology or dual porosity provided by a primary porosity of the individual tantalum fibers making up the primary powder and a larger secondary porosity formed between the primary powders agglomerated into the agglomerated powder.
Abstract:
An electrolyte for activating an electrolytic or electrochemical capacitor is described. The electrolyte preferably includes a mixed solvent of water and ethylene glycol having an ammonium salt dissolved therein. An acid such as phosphoric or acetic acid is used to provide a pH of about 3 to 6. The electrolyte is particularly useful for activating a ruthenium oxide/tantalum capacitor having an anode breakdown voltage in the range of 175 to 300 volts.
Abstract:
Tantalum powders produced using a tantalum fiber precursor are described. The tantalum fiber precursor is chopped or cut into short lengths having a uniform fiber thickness and favorable aspect ratio. The chopped fibers are formed into a primary powder having a controlled size and shape, narrow/tight particle size distribution, and low impurity level. The primary powder is then agglomerated into an agglomerated powder displaying suitable flowability and pressability such that pellets with good structural integrity and unifrom pellet porosity are manufacturable. The pellet is sintered and anodized to a desired formation voltage. The thusly created capacitor anode has a dual morphology or dual porosity provided by a primary porosity of the individual tantalum fibers making up the primary powder and a larger secondary porosity formed between the primary powders agglomerated into the agglomerated powder.
Abstract:
A wet tantalum electrolytic capacitor containing a cathode, fluidic working electrolyte, and anode formed from an anodically oxidized sintered porous tantalum pellet is described. The pellet is formed from a pressed tantalum powder. The tantalum powder is formed by reacting a tantalum oxide compound, for example, tantalum pentoxide, with a reducing agent that contains a metal having an oxidation state of 2 or more, for example, magnesium. The resulting tantalum powder is nodular or angular and has a specific charge that ranges from about 9,000 μF*V/g to about 11,000 μF*V/g. Using this powder, wet tantalum electrolytic capacitors have breakdown voltages that ranges from about 340 volts to about 450 volts. This makes the electrolytic capacitors ideal for use in an implantable medical device.
Abstract:
An implantable cardioverter defibrillator (ICD) includes a communication interface operable to receive a communication signal from an external programmer. With the ICD not being in the presence of an MRI field generated by an MRI scanner, a communication signal is sent precharging a high energy storage capacitor before the patient undergoes the MRI scan. The signal also switches the ICD into an MRI mode which turns off the ICD's sensing functions detecting a dangerous ventricular arrhythmia. An operator monitors the patient's vital signs with sensors connected to the patient. If the patient does require the defibrillation shock, the operator sends a second communication signal delivering the defibrillation shock from the precharged high energy storage capacitor of the ICD. The patient can then be removed from the MRI scanner and the RF and gradient fields of the MRI scanner turned off.
Abstract:
Tantalum powders produced using a tantalum fiber precursor are described. The tantalum fiber precursor is chopped or cut into short lengths having a uniform fiber thickness and favorable aspect ratio. The chopped fibers are formed into a primary powder having a controlled size and shape, narrow/tight particle size distribution, and low impurity level. The primary powder is then agglomerated into an agglomerated powder displaying suitable flowability and pressability such that pellets with good structural integrity and uniform pellet porosity are manufacturable. The pellet is sintered and anodized to a desired formation voltage. The thusly created capacitor anode has a dual morphology or dual porosity provided by a primary porosity of the individual tantalum fibers making up the primary powder and a larger secondary porosity formed between the primary powders agglomerated into the agglomerated powder.
Abstract:
An implantable cardioverter defibrillator (ICD) includes a communication interface operable to receive a communication signal from an external programmer. With the ICD not being in the presence of an MRI field generated by an MRI scanner, a communication signal is sent precharging a high energy storage capacitor before the patient undergoes the MRI scan. The signal also switches the ICD into an MRI mode which turns off the ICD's sensing functions detecting a dangerous ventricular arrhythmia. An operator monitors the patient's vital signs with sensors connected to the patient. If the patient does require the defibrillation shock, the operator sends a second communication signal delivering the defibrillation shock from the precharged high energy storage capacitor of the ICD. The patient can then be removed from the MRI scanner and the RF and gradient fields of the MRI scanner turned off.