Abstract:
The instant invention relates to a process and method for manufacturing 2,3,3,3-tetrafluoropropene by dehydrohalogenating a reactant stream of 2-chloro-1,1,1,2-tetrafluoropropane that is substantially free from impurities, particularly halogenated propanes, propenes, and propynes.
Abstract:
The present invention relates, in part, to the discovery that the presence of impurities in a reactor for dehydrochlorinating HCFC-244bb to HFO-1234yf results in a reduced conversion rate and/or a selectivity changeover from HFO-1234yf to HCFO-1233xf. By substantially removing such impurities, it is shown that the conversion rate may be improved and selectivity to HFO-C 1234yf via dehydrochlorination of HCFC-244bb is also improved.
Abstract:
The present invention relates, in part, to the discovery that the presence of HF in a HCFC-244bb feedstream in a reaction for the preparation of HFO-1234yf results in selectivity changeover from HFO-1234yf to HCFO-1233xf. By substantially removing HF, it is shown that the selectivity to HFO-1234yf via dehydrochlorination of HCFC-244bb is improved.
Abstract:
The invention relates to a process to prepare tetrahalopropenes, such as 2-chloro-3,3,3-trifluoropropene (1233xf). The process comprises atomizing a feed material, such as 1,1,2,3-tetrachloropropene (1230xa) and the like, and mixing it with superheated HF to form a vaporized composition of feed material and HF with substantially instantaneous contact with a vapor phase fluorination catalyst. The invention extends catalyst life and forestalls catalyst deactivation.
Abstract:
Disclosed is a method for the production of 1233xf comprising the continuous low temperature liquid phase reaction of 1,1,1,2,3-pentachloropropane and anhydrous HF, without the use of a catalyst, wherein the reaction takes place in one or more reaction vessels, each one in succession converting a portion of the original reactants fed to the lead reaction vessel and wherein the reactions are run in a continuous fashion.
Abstract:
The present disclosure provides a process for producing trifluoroiodomethane, the process comprising providing a reactant stream comprising hydrogen iodide and at least one trifluoroacetyl halide selected from the group consisting of trifluoroacetyl chloride, trifluoroacetyl fluoride, trifluoroacetyl bromide, and combinations thereof, reacting the reactant stream in the presence of a first catalyst at a first reaction temperature from about 25° C. to about 400° C. to produce an intermediate product stream comprising trifluoroacetyl iodide, and reacting the intermediate product stream in the presence of a second catalyst at a second reaction temperature from about 200° C. to about 600° C. to produce a final product stream comprising the trifluoroiodomethane.
Abstract:
The present disclosure provides a method for conversion of a mixture of high-boiling fluorinated components comprising 1,1,3,3-tetrachloro-1-fluoropropane (HCFC-241fa), 1,3,3-trichloro-1,1-difluoropropane (HCFC-242sfa), 1,1,3-trichloro-1,3-difluoropropane (HCFC-242fb), 3,3-dichloro-1,1,1-trifluoropropane (HCFC-243fa), 1,3-dichloro-1,1,3-trifluoropropane (HCFC-243fb), 3-chloro-1,1,1,3-tetrafluoropropane (HCFC-244fa), their isomers, and combinations thereof, to 1-chloro-3,3,3-trifluoropropene (HCFO-1233zd). Heavy impurities, such as oligomers and other high boiling impurities, that are present may be purged during the process to prevent yield loss and reduction of catalyst efficacy.
Abstract:
The present disclosure provides a composition including trifluoroacetyl iodide, at least one organic impurity and at least one inorganic impurity. The at least one organic impurity includes at least one of: difluoroiodomethane, pentafluoroiodoethane, iodomethane, iodopropane, dichlorotetrafluoroethane, dichlorotrifluoroethane, trichlorotrifluoroethane, methyltrifluoroacetate, trifluoroacetic anhydride, difluorobutane and methyl propane. The at least one inorganic impurity includes at least one of: hydrogen iodide, hydrogen chloride, iodine and hydrogen triiodide.
Abstract:
A method for reducing 1,1,1,2,2-pentafluoropropane (HFC-245cb) in a trans-1,3,3,3-tetrafluoropropene (HFO-1234ze(E)) manufacturing process including catalyst conditioning, temperature reduction, and contact time reduction. The method includes dehydrofluorinating 1,1,1,3,3-pentafluoropropane (HFC-245fa) with a catalyst mixture to produce a product mixture with HFO-1234ze(E) and HFC-245cb, and either incorporating a conditioned catalyst, using a lower temperature for the dehydrofluorination, or reducing the contact time for the dehydrofluorination to reduce the formation of HFC-245cb.
Abstract:
An azeotrope or azeotrope-like composition consisting essentially of effective amounts of 1-chloro-1,1,2-trifluoroethane (HCFC-133b) and 1,1,2-trifluoroethane (HFC-143). Methods for separating the azeotrope or azeotrope-like composition and/or exploiting the composition in extractive and pressure swing distillation are also disclosed in connection with methods of manufacturing 1,1,2-trifluoroethane (HFC-143).