Abstract:
An image processing system for generating a display for a vehicle. The image processing system receives images, respectively, from a plurality of cameras mounted on the vehicle. The field of view of the plurality of cameras at least partially overlaps. The field of view of one or more of the plurality of cameras includes a region underneath the vehicle. The images are transformed to a common reference plane using a perspective transformation algorithm and based on intrinsic and extrinsic parameters of the plurality of cameras, to thereby obtain a projected image. The projected image is projected to the common reference plane. A display is generated based on the projected image. The display includes a synthetic depiction of the vehicle including an outer profile. The display includes an image area within the outer profile that is based on the projected image for the region underneath the vehicle.
Abstract:
Avionic display systems and methods are provided for generating avionic displays, which include symbology and other graphics pertaining to forecast overpressure events, which are forecast to occur during supersonic aircraft flight. In various embodiments, the avionic display system includes a display device on which an avionic display is produced. A controller architecture is operably coupled to the display device. Storage media contains computer-readable code or instructions that, when executed by the controller architecture, cause the avionic display system to determine whether an overpressure event is forecast to occur due to the predicted future occurrence of a sonic boom, which has a magnitude exceeding a boom tolerance threshold. When the controller architecture determines that an overpressure event is forecast to occur, the avionic display system further generates symbology on the avionic display indicative of or visually signifying the forecast overpressure event.
Abstract:
Avionic display systems and methods are provided for generating avionic displays, which include symbology and other graphics pertaining to forecast overpressure events, which are forecast to occur during supersonic aircraft flight. In various embodiments, the avionic display system includes a display device on which an avionic display is produced. A controller architecture is operably coupled to the display device. Storage media contains computer-readable code or instructions that, when executed by the controller architecture, cause the avionic display system to determine whether an overpressure event is forecast to occur due to the predicted future occurrence of a sonic boom, which has a magnitude exceeding a boom tolerance threshold. When the controller architecture determines that an overpressure event is forecast to occur, the avionic display system further generates symbology on the avionic display indicative of or visually signifying the forecast overpressure event.
Abstract:
Methods and systems are provided for displaying a taxi clearance for an aircraft at an airport. One exemplary method involves receiving user input indicative of a constraining taxi path of a plurality of taxi paths at the airport, determining a first taxi portion between an initial location for the taxi clearance and the constraining taxi path, determining a second taxi portion between the constraining taxi path and a destination location for the taxi clearance, and displaying, on a display device associated with the aircraft, a taxi route comprising the first taxi portion, the second taxi portion, and the constraining taxi path between the first taxi portion and the second taxi portion.
Abstract:
A method is provided for displaying integrated minimum vectoring and safe altitude information on a display device in an aircraft. The method comprises displaying a graphical representation of a safe altitude sector and a vectoring altitude sector on the display device, and displaying a graphical representation of the aircraft on the display device to indicate the current location of the aircraft and a minimum altitude value associated therewith. The safe altitude sector corresponds to a first geographic area having a designated minimum safe altitude value associated therewith. The vectoring altitude sector corresponds to a second geographic area having a designated minimum vectoring altitude value associated therewith that is below the designated minimum safe altitude value. The graphical representation of the aircraft is displayed within at least one of the graphical representation of the safe altitude sector and the graphical representation of the vectoring altitude sector.
Abstract:
A system and method display general terrain clearance awareness, whether the aircraft is off route, on airway, off procedure, or on procedure, so altitude thresholds are not violated and EGPWS alerts are avoided, while reducing clutter in displaying the information. Altitude, location, and rate of change in altitude are considered in determining whether the aircraft will exceed the threshold altitude. A flight path or an area to be entered is highlighted when the threshold altitude will be violated by the aircraft with the current flight path. The threshold altitude may be a minimum or maximum allowed altitude, or the terrain.