Abstract:
An apparatus for despreading in an optical domain configured to split a received optical signal into a first optical signal and a second optical signal, perform phase deflection on the second optical signal, output a third optical signal, perform phase deflection on the first optical signal and the third optical signal, output a fourth optical signal and a fifth optical signal to a balanced receiver, and superimpose the fourth optical signal and the fifth optical signal to generate a first electrical signal. A multiplication operation in conventional code division multiple access (CDMA) despreading is transferred from an electrical domain to an optical domain such that a chip rate can be easily raised to 20 gigahertz (GHz) or even to 25 GHz, a maximum rate of 100 gigabits per second (Gbps) can be provided in a single wavelength, and a user requirement for high bandwidth can be met.
Abstract:
An optical transmit system, including a direct modulator configured to generate an optical signal, an optical amplifier coupled to the direct modulator configured to amplify the optical signal output by the direct modulator, and a stimulated Brillouin scattering component coupled to the optical amplifier configured to limit optical power of the optical signal output by the optical amplifier, where a stimulated Brillouin scattering threshold of the stimulated Brillouin scattering component is equal to minimum optical power of a part, which needs to be limited, of the optical signal output by the optical amplifier, and the stimulated Brillouin scattering component reflects, using a stimulated Brillouin scattering frequency difference, a part, which has optical power higher than the minimum optical power, of the optical signal output by the optical amplifier in order to limit outputting of this part of the optical signal.
Abstract:
A method includes: obtaining, by a PCRF, actual rates of service flows processed by multiple user equipment; determining, by the PCRF, a congestion relief policy according to the obtained actual rates of the service flows processed by the multiple user equipment; and sending, by the PCRF, the congestion relief policy to a service flow pass-through node, so that the service flow pass-through node executes the congestion relief policy. It is determined, according to obtained actual rates of service flows processed by different user equipment, that an actual rate of a service flow processed by a user equipment is limited, so as to increase an actual rate of a service flow processed by another user equipment. This effectively relieves system congestion and improves user experience during congestion.
Abstract:
A data transmission method includes receiving, by an optical line terminal (OLT) from an optical network unit (ONU), uplink burst data that includes a synchronization data block and a payload, where the synchronization data block includes first synchronization data, wherein the first synchronization data includes a first preamble and an ONU identifier, and a first bandwidth occupied by the first frequency distribution of the first synchronization data is narrower than a second bandwidth occupied by the second frequency distribution of the payload, and obtaining, by the OLT from the first synchronization data, the ONU identifier.
Abstract:
An action recognition method and apparatus related to artificial intelligence and include extracting a spatial feature of a to-be-processed picture, determining a virtual optical flow feature of the to-be-processed picture based on the spatial feature and X spatial features and X optical flow features in a preset feature library, where the X spatial features and the X optical flow features include a one-to-one correspondence, determining a first type of confidence of the to-be-processed picture in different action categories based on similarities between the virtual optical flow feature and Y optical flow features, where each of the Y optical flow features in the preset feature library corresponds to one action category, X and Y are both integers greater than 1, and determining an action category of the to-be-processed picture based on the first type of confidence.
Abstract:
A wireless communications method is provided. The method includes acquiring, by a policy and charging rules function (PCRF) entity, a first parameter, a second parameter, and state information of a current service of a base station; determining, according to the first parameter and the second parameter, and with reference to the state information of the current service of the base station, whether a condition for guaranteeing quality of service (QoS) of a service is satisfied; and if it is determined that the condition for guaranteeing the QoS of the service is satisfied, permitting providing a user equipment with the first service having a corresponding QoS guarantee; or if it is determined that the condition for guaranteeing the QoS of the service is not satisfied, performing a first operation. The method is applied to the field of communications.
Abstract:
A signal processing method, an optical receiver and optical network system is provided. The method includes: receiving a first optical signal sent by an optical network unit, generating a second optical signal and modulating a phase of the second optical signal, obtaining at least one path of electrical signals after the first optical signal and the second optical signal separately undergo polarization splitting, frequency mixing, and optical-electrical conversion, outputting a third electrical signal after performing operation processing on the at least one path of electrical signals, and restoring a data signal according to the third electrical signal and performing sending. The embodiments example benefits are greatly reducing complexity of system implementation and maximally reducing a system upgrade cost and an optical power loss.
Abstract:
An action recognition method and apparatus related to artificial intelligence and include extracting a spatial feature of a to-be-processed picture, determining a virtual optical flow feature of the to-be-processed picture based on the spatial feature and X spatial features and X optical flow features in a preset feature library, where the X spatial features and the X optical flow features include a one-to-one correspondence, determining a first type of confidence of the to-be-processed picture in different action categories based on similarities between the virtual optical flow feature and Y optical flow features, where each of the Y optical flow features in the preset feature library corresponds to one action category, X and Y are both integers greater than 1, and determining an action category of the to-be-processed picture based on the first type of confidence.
Abstract:
Embodiments of this application disclose a board, an optical module, a MAC chip, a DSP, and an information processing method. The board in the embodiments of this application includes a media access control (MAC) chip, a digital signal processor (DSP), and an equalizer. The MAC chip is configured to send first information to the DSP at an optical network unit (ONU) online stage, where the first information includes a first ONU identifier. The DSP is configured to receive the first information, and determine a first reference equalization parameter, where the first reference equalization parameter is related to the first ONU identifier. The DSP is further configured to set an equalization parameter of the equalizer to the first reference equalization parameter.
Abstract:
An action recognition method and apparatus related to artificial intelligence and include extracting a spatial feature of a to-be-processed picture, determining a virtual optical flow feature of the to-be-processed picture based on the spatial feature and X spatial features and X optical flow features in a preset feature library, where the X spatial features and the X optical flow features include a one-to-one correspondence, determining a first type of confidence of the to-be-processed picture in different action categories based on similarities between the virtual optical flow feature and Y optical flow features, where each of the Y optical flow features in the preset feature library corresponds to one action category, X and Y are both integers greater than 1, and determining an action category of the to-be-processed picture based on the first type of confidence.