Abstract:
Embodiments of the present invention provide a method and an apparatus for transmitting and receiving a client signal in an optical transport network. In the transmission method, a received client signal is mapped into a variable-rate container OTU-N, wherein a rate of the OTU-N is N times as high as a preset reference rate; and then, the variable-rate container OTU-N is split into N optical sub-channel transport units OTUsubs by column, where a rate of each OTUsub equals to the reference rate; next, the N optical sub-channel transport units OTUsubs are modulated onto one or more optical carriers; at last, the one or more optical carriers is transmitted through a fiber.
Abstract:
The present invention provides a method, apparatus and system for transmitting and receiving a client signal. A client signal is mapped to a low-order ODU via a GFP scheme, wherein the low-order ODU is sized to M equal sized timeslots of a high-order OPUk, wherein the high-order OPUk is divided into N equal sized timeslots, wherein M is any one of a group from 1 to N; wherein if k=2, then N=8, if k=3, then N=32 and if k=4, then N=80. The low-order ODU with the client signal is mapped to M equal sized timeslots of the high-order OPUk via a GMP scheme; and an OTU with the high-order OPUk and overheads is formed, and then the OTU is transmitted.
Abstract:
Embodiments of the present invention provide a method and an apparatus for transmitting and receiving a client signal in an optical transport network. In the transmission method, a received client signal is mapped into a variable-rate container OTU-N, wherein a rate of the OTU-N is N times as high as a preset reference rate; and then, the variable-rate container OTU-N is split into N optical sub-channel transport units OTUsubs by column, where a rate of each OTUsub equals to the reference rate; next, the N optical sub-channel transport units OTUsubs are modulated onto one or more optical carriers; at last, the one or more optical carriers is transmitted through a fiber.
Abstract:
Method and apparatus for transporting client signals in an OTN are illustrated. In one embodiment, the method includes: mapping a client signal into a first Optical Channel Data Tributary Unit (ODTU) frame including an ODTU payload area and an ODTU overhead area, such that a plurality of n-bit data units of the client signal are inserted into the ODTU payload area and number information is inserted into the ODTU overhead area; mapping the first ODTU frame into the OPUk frame, such that the plurality of n-bit data units are mapped into an OPUk payload part occupying at least one Tributary Slot (TS) of the OPUk payload area and the number information of the ODTU overhead area is mapped into a first OPUk overhead part of the OPUk frame; forming an Optical Channel Transport Unit-k (OTUk) frame including the OPUk frame for transmission.
Abstract:
The present invention provides a method, which including: determining, by a first node, an adjustment requirement for a line interface rate; and according to the adjustment requirement for the line interface rate, adjusting, by the first node, a transport bandwidth of an optical channel (OCh) link, adjusting the number of optical channel transport lanes (OTLs) in an optical channel transport unit (OTUCn) link, and adjusting the number of optical channel data lanes (ODLs) in an optical channel data unit (ODUCn) link, where the OTL is in one-to-one correspondence with the ODL. In embodiments of the present invention, according to an adjustment requirement for a line interface rate, a transport bandwidth of an OCh link is adjusted, the number of OTLs in an OTUCn link is adjusted, and the number of ODLs in an ODUCn link is adjusted, so that the line interface rate can be dynamically adjusted.
Abstract:
A microwave photonics based signal receiving device includes a signal generation module, a first Mach-Zehnder modulator, a dispersion module, a second Mach-Zehnder modulator, and a signal conversion module. The signal receiving device simplifies a structure of the signal receiving device by adopting quadrature demodulation. The signal receiving device demodulates a high-order modulation signal and flexibly adjusts a microwave carrier frequency.