Abstract:
A method for operation of an acoustic tool, having a plurality of acoustic sensors, may include receiving acoustic waves from an acoustic source located at a depth in a borehole. A selected location (e.g., central location) of the acoustic sensor array may be positioned substantially at the depth of the acoustic source based on a symmetricity of an upper and lower section of a frequency-wavenumber (f-k) transform pattern with respect to a selected wavenumber. A radial distance from the acoustic source to the acoustic tool may be determined based on a theoretical f-k transform pattern used as a mask to filter measured data in the f-k domain.
Abstract:
In distributed fiber-optic sensing within a borehole, the accuracy of correlating signal channels with depth along the borehole can be improved by taking the thermo-optic effect on the group velocity of light into account. In an example application, this allows, in turn, to more accurately localize acoustic sources via distributed acoustic sensing. Additional embodiments are disclosed.
Abstract:
The acoustic energy induced by a transmitter module of an acoustic logging tool is dependent on several factors. In some implementations, the induced acoustic energy is dependent on the electromagnetic energy input into the transmitter module, the response behavior of the transmitter module, and the operating conditions of the transmitter module. Variation in one or more of these factors can result in a corresponding variation in the induced acoustic. Thus, a desired acoustic signal can be produced by applying an appropriately selected input signal to the transmitter module, while accounting for other factors that influence the output of the transmitter module.
Abstract:
A method including selecting a forward model based on a modeled well structure and including a single modeled acoustic source located in a modeled wellbore and a plurality of modeled acoustic sensors located in a modeled source area, simulating an acoustic signal generated by the single modeled acoustic source and received by each modeled acoustic sensor, calculating phases of the simulated acoustic signals received at each modeled acoustic sensor, obtaining with a principle of reciprocity a plurality of modeled acoustic sources in the modeled source area and a single modeled acoustic sensor in the modeled wellbore, calculating phase delays of the simulated acoustic signals between each modeled acoustic source and the single modeled acoustic sensor, detecting acoustic signals generated by a flow of fluid using acoustic sensors in a wellbore, and processing the acoustic signals using the phase delays to generate a flow likelihood map.
Abstract:
In accordance with embodiments of the present disclosure, systems and methods for determining a dynamic effective elastic modulus of a composite slickline or wireline cable are provided. A system for estimating the effective elastic modulus (or change thereof) may include a sensing head assembly, a vibration generator, a pair of pulleys, and an optical-based signal processing assembly. The system may detect a resonant frequency of a section of the composite cable held between the two pulleys and estimate the effective elastic modulus based on the detected resonant frequency variation. Adjustments for weight and length of the cable extending into the wellbore may be made as well to determine the dynamic elastic modulus of the cable. The opto-mechanical integrated system described below may enable real-time elastic modulus determination. The system may provide a non-contact inspection method for monitoring mechanical fatigue of a composite cable without interfering with the composite cable intervention operation.
Abstract:
In accordance with embodiments of the present disclosure, systems and methods for determining a dynamic effective elastic modulus of a composite slickline or wireline cable are provided. A system for estimating the effective elastic modulus (or change thereof) may include a sensing head assembly, a vibration generator, a pair of pulleys, and an optical-based signal processing assembly. The system may detect a resonant frequency of a section of the composite cable held between the two pulleys and estimate the effective elastic modulus based on the detected resonant frequency variation. Adjustments for weight and length of the cable extending into the wellbore may be made as well to determine the dynamic elastic modulus of the cable. The opto-mechanical integrated system described below may enable real-time elastic modulus determination. The system may provide a non-contact inspection method for monitoring mechanical fatigue of a composite cable without interfering with the composite cable intervention operation.