Abstract:
Disclosed are systems and methods for processing broadband acoustic signals acquired by a plurality of acoustic sensors, using an array-signal-processing technique to compute fused-signal maps in the frequency domain for a plurality of frequency bins. In accordance with various embodiments, the fused-signal maps are combined across the frequency bins, with respective weightings that are based on eigenvalues of covariance matrices computed for the plurality of frequency bins. The combined maps can be used to locate an acoustic source in a wellbore.
Abstract:
In accordance with embodiments of the present disclosure, systems and methods for taking acoustic/ultrasonic wave measurements of a wellbore using a downhole tool equipped with microelectromechanical (MEM) transducers are provided. The MEM transducers may include a plurality of MEM transmitters (e.g., MEM speakers) and a plurality of separate MEM receivers (e.g., MEM microphones). These MEM transducers may be disposed in arrays proximate an outer surface of the downhole tool to collect acoustic/ultrasonic wave measurements of the full circumference of a wellbore. Due to their small size, large numbers of MEM transducers may be distributed radially around the downhole tool. Such an arrangement of sensors may enable the downhole tool to perform measurements of the entire wellbore without the downhole tool needing to be rotated, leading to an increased signal-to-noise ratio of the measurements.
Abstract:
Disclosed are systems and methods for processing broadband acoustic signals acquired by a plurality of acoustic sensors, using an array-signal-processing technique to compute fused-signal maps in the frequency domain for a plurality of frequency bins. In accordance with various embodiments, the fused-signal maps are combined across the frequency bins, with respective weightings that are based on eigenvalues of covariance matrices computed for the plurality of frequency bins. The combined maps can be used to locate an acoustic source in a wellbore.
Abstract:
A method including selecting a forward model based on a modeled well structure and including a single modeled acoustic source located in a modeled wellbore and a plurality of modeled acoustic sensors located in a modeled source area, simulating an acoustic signal generated by the single modeled acoustic source and received by each modeled acoustic sensor, calculating phases of the simulated acoustic signals received at each modeled acoustic sensor, obtaining with a principle of reciprocity a plurality of modeled acoustic sources in the modeled source area and a single modeled acoustic sensor in the modeled wellbore, calculating phase delays of the simulated acoustic signals between each modeled acoustic source and the single modeled acoustic sensor, detecting acoustic signals generated by a flow of fluid using acoustic sensors in a wellbore, and processing the acoustic signals using the phase delays to generate a flow likelihood map.
Abstract:
The disclosed embodiments include a method of downhole leak detection. The method of downhole leak detection includes obtaining physical signals detected by at least one physical sensor traveling along a wellbore. Additionally, the method includes detecting correlated sequences from the physical signals and constructing a covariance matrix based on the correlated sequences. The method also includes computing a spatial spectrum indicative of a location of a leak based on the covariance matrix.
Abstract:
The subject technology relates to estimation of flow rates using acoustics in a subterranean borehole and/or formation. Other methods, systems, and computer-readable media are also disclosed. The subject technology includes drilling a wellbore penetrating a subterranean formation. The subject technology includes logging the wellbore using an acoustic sensing tool to obtain logged measurements, and obtaining acoustic pressure data associated with a leak source in the wellbore using the logged measurements. The subject technology also includes determining a flow rate (volumetric for fluid-based or mass for gas-based) of the leak source from the acoustic pressure data, and determining an area of the leak source from the determined flow rate. The subject technology also includes generating and providing, for display, a representation of the leak source using the flow rate and the area of the leak source.
Abstract:
Systems and methods for determining whether mechanical fatigue exists in a downhole cable using thermally-induced acoustic waves are disclosed herein. A cable fatigue monitoring system includes a thermal source, one or more light sources, one or more photodetector arrays, and a computing system comprising a processor, a memory, and a cable distortion module. The cable distortion module is operable to generate acoustic waves in a cable using the thermal source, direct light from the one or more light sources toward the cable, detect light from the one or more light sources transmitted past the cable at the one or more photodetector arrays, and determine, based on the detected light transmitted past the cable, whether a change in velocity of the acoustic waves has occurred in the cable.
Abstract:
Disclosed are tools, systems, and methods for detecting one or more underground acoustic sources and localizing them in depth and radial distance from a wellbore, for example, for the purpose of finding underground fluid flows, such as may result from leaks in the well barriers. In various embodiments, acoustic-source detection and localization are accomplished with an array of at least three acoustic sensors disposed in the wellbore, in conjunction with array signal processing.
Abstract:
Described herein are tools, systems, and methods for detecting, classifying, and/or quantifying underground fluid flows based on acoustic signals emanating therefrom, using a plurality of acoustic sensors disposed in the wellbore in conjunction with array signal processing and systematic feature-based classification and estimation methods.
Abstract:
The disclosed embodiments include leak detection systems and methods of downhole leak detection. In one embodiment, the method includes obtaining physical signals measured by at least one physical sensor traveling along a wellbore. The method also includes performing a frame decomposition operation on the physical signals of a first of the at least one the physical sensor to obtain a plurality of virtual signals associated with an array of virtual sensors, each virtual sensor of the array of virtual sensors being located at a virtual distance relative to the first physical sensor, the virtual distance corresponding to a physical distance. The method further includes synchronizing the virtual signals of the array of virtual sensors. The method further includes computing a spatial spectrum indicative of a location of a leak based on the synchronized virtual signals.