Abstract:
This process includes the cooling of an introduction stream (72) inside an upstream heat exchanger (28). It includes the introduction of the cooled introduction stream (76) into a fractionating column (50) and the tapping at the bottom portion of the column (50) of the denitrided stream of hydrocarbons. It also includes the introduction of a stream (106) rich in nitrogen obtained from the head portion of the column (50) into a separation container (60) and the recovery of the head gaseous stream from the separation container (60) in order to form the stream (20) which is rich in helium. The liquid stream (110) is obtained from the bottom of the first separation container (60) is separated into a liquid nitrogen stream (18) and a first reflux stream (114) which is introduced as reflux into the head of the fractionating column (50).
Abstract:
In this process, the LNG stream is sub-cooled with a refrigerating fluid in a first heat exchanger. This refrigerating fluid undergoes a closed second refrigeration cycle which is independent of the first cycle. The closed cycle comprises a phase of heating the refrigerating fluid in a second heat exchanger, and a phase of compressing the refrigerating fluid in a compression apparatus to a pressure greater than its critical pressure. It further comprises a phase of cooling the refrigerating fluid originating from the compression apparatus in the second heat exchanger and a phase of dynamically expanding of a proportion of the refrigerating fluid issuing from the second heat exchanger in a turbine. The refrigerating fluid is formed by a mixture of nitrogen-containing fluids.
Abstract:
The invention relates to a method for fractionating a gas produced by the pyrolysis of hydrocarbons (1) for the recovery of C2 and higher hydrocarbons, in particular ethylene and ethane, comprising an operation (70) for compressing and drying gas (1) as a result of it passing into a series of compressors (3, 10, 17, 24, 36), an operation (80) for progressively cooling and partially liquefying the gas produced by compression and drying operation (70) as a result of it successively passing into a cryogenic exchanger (62), and a distillation operation (90) in a column (64), and the corresponding installation.According to the invention, cryogenic exchanger (62) is cooled by at least one cooling liquid (400) which is liquid natural gas (LNG).
Abstract translation:本发明涉及一种用于分馏烃(1)的热分解产生的用于回收C 2 O 3和更高级烃,特别是乙烯和乙烷的气体的方法,其包括用于压缩的操作(70) 和干燥气体(1),其由于其进入一系列压缩机(3,10,17,24,36),用于逐渐冷却和部分液化由压缩和干燥操作产生的气体的操作(80)(70 ),其结果是它连续地进入低温交换器(62)和在列(64)中的蒸馏操作(90)和相应的装置。 根据本发明,低温交换器(62)由至少一种液体天然气(LNG)的冷却液(400)冷却。
Abstract:
A process for liquefaction of and nitrogen extraction from natural gas, an installation for implementation of the process, and gases obtained by this process. In the process, a first top fraction is cooled and liquefied, separated into a second top fraction which is relatively volatile and which provides gaseous nitrogen, and into a second bottom fraction which is withdrawn. The first bottom fraction is cooled in order to provide liquefied natural gas essentially free nitrogen.
Abstract:
A method of and a plant for recovering liquid hydrocarbons in a gaseous batch, the plant comprising a compressor for the gaseous batch, a column for absorbing C5 and heavier hydrocarbons associated with a debutanization column; a column for absorbing C3 and heavier hydrocarbons associated with a de-ethanization column and with a heat exchange system connected to a refrigeration cycle, the plant providing from a gaseous batch issuing from a catalytic cracking unit a debutanized gasoline, a liquefied gas cut (C3 and C4-hydrocarbons) and a gaseous cut (C2 and lighter hydrocarbons) wherein the losses of C3 and higher C-hydrocarbons are much smaller than that occurring with existing plants.
Abstract:
The invention relates to a method and an apparatus for cryogenic fractionation of a gaseous feed comprising a contact purifying-refrigerating column into the bottom of which is injected a partially condensed gaseous feed, the said column producing in its head portion a residual gas and in its bottom portion a liquid which is injected into a fractionating column producing in its head portion a distillate which is at least partially condensed and injected into the head portion of the column to thus recover in the bottom liquid of this column the heavy compounds contained in the vaporized fraction of the gaseous feed.
Abstract:
A process of and apparatus for liquefying a dry gas with low boiling point in a first circuit through heat exchange with a main refrigerating fluid in a second circuit itself pre-cooled to its at least partial liquefaction through heat exchange with an auxiliary refrigerating fluid in a third circuit, wherein, for a same amount of treated products, the required total compression input power for the refrigerating fluids is reduced by performing in said third circuit an intermediate condensation between the two last compression stages followed by a phase separation, the gaseous phase being compressed to a high pressure in the last compression stage whereas the liquid phase is compressed to a high pressure by a pump and recycled to a cryogenic heat exchanger for cooling the gas initially in the moist state thereby at least partially drying same.
Abstract:
A method of processing through low temperature heat exchanges natural gases and cracked gases consisting in using a cooling cycle including compressing and then cooling a cycle mixture of gases consisting of C1 hydrocarbons, C2 hydrocarbons and C3 hydrocarbons through outer coolers with attendant total liquefaction of the cycle mixture under pressure; subsequently effecting a sub-cooling of the mixture within heat exchanges in counter-current relation to one expanded part thereof and/or cold returns and rejects of products processed in the cycle and finally expanding said sub-cooled mixture in at least one exchanger where various cooling processes of the treated products are carried out at successive temperature levels.
Abstract:
A process for the production of a subcooled liquefied natural gas stream from a natural gas feed stream. Passing a first natural gas feed stream through a first heat exchanger for precooling by heat exchange with a first stream of gaseous refrigerant produced in a first refrigeration cycle comprising a first dynamic expansion turbine. Passing the precooled feed stream through a second heat exchanger for liquefying by heat exchange with a second stream of gaseous refrigerant produced in a second refrigeration cycle comprising a second dynamic expansion turbine. Passing the liquefied natural gas stream through a third heat exchanger for subcooling the liquefied gas by heat exchange with a third refrigerant stream produced in a third refrigeration cycle comprising a third dynamic expansion turbine separate from the first turbine and the second turbine. An installation includes devices for conveying the natural gas stream, the heat exchangers and the turbines and compression devices cooling the refrigerants for the heat exchangers.
Abstract:
A method allowing a gaseous mixture such as a natural gas to be liquefied by using a first compressed coolant mixture M.sub.1, at least partially condensed by cooling with the aid of an external coolant fluid, then subcooled, expanded, and vaporized, and a second compressed coolant mixture, cooled with the aid of an external coolant fluid, then cooled by heat exchange with the first coolant mixture M.sub.1 during the first cooling stage (I), after which it is in an at least partially condensed state. The second partially condensed coolant mixture is sent without phase separation to a second cooling stage (II) where it is fully condensed, expanded, and vaporized at at least two pressure levels. The subcooled natural gas is expanded to form the LNG produced.