Abstract:
Sensor shaped to have a frequency response that has less spectral fading than a sensor with a rectangular wrapping pattern, and methods for making such sensors, are disclosed. One such method includes selecting a wrapping pattern comprising multiple layers in which a top layer has a different length than a bottom layer and where the bottom layer is adjacent a mandrel. The method further includes wrapping optical fiber around the mandrel according to the wrapping pattern.
Abstract:
Sensor shaped to have a frequency response that has less spectral fading than a sensor with a rectangular wrapping pattern, and methods for making such sensors, are disclosed. One such method includes selecting a wrapping pattern comprising multiple layers in which a top layer has a different length than a bottom layer and where the bottom layer is adjacent a mandrel. The method further includes wrapping optical fiber around the mandrel according to the wrapping pattern.
Abstract:
A method for determining relative location of an acoustic event along a channel such as a wellbore includes obtaining two acoustic signals at are obtained at two different and known depths in the wellbore, dividing the acoustic signals into windows, and determining the relative loudnesses of pairs of the windows. The power of the acoustic signals may be used as a proxy for the loudness of the acoustic event, and this determination can be made in the time or frequency domains. The relative depth of the acoustic event can then be determined relative to the two known depths from the relative loudnesses. The acoustic event may be, for example, casing vent flow, gas migration, a leak along a pipeline, or sounds observed in an observation well from a nearby well in which fracking is being performed.
Abstract:
Using at least one sensor positioned to monitor a fluid conduit, an acoustic event is detected. A speed of sound of the acoustic event is determined. The speed of sound of the acoustic event is compared to a baseline speed of sound. Based on the comparison, whether or not a leak has occurred in the fluid conduit may be determined.
Abstract:
There are described methods, systems, and computer-readable media for detecting events in a conduit. Multiple lengths of optical fiber positioned alongside a conduit are used to detect a signal. For each length of optical fiber, interferometric data is obtained from the detected signal. The interferometric data obtained for one length of optical fiber is compared to the interferometric data obtained for one or more other lengths of optical fiber. Based on the comparison, it is determined whether the signal originated from the conduit.
Abstract:
An optical fiber assembly comprising an optical fiber casing and optical fiber deployed within and fixed relative to the casing at multiple fixation points spaced along the casing. The optical fiber assembly includes one or more weights attached within the casing to the optical fiber, for increasing a tension of the optical fiber between the multiple fixation points; flexible portions and rigid portions, with the optical fiber fixed to the flexible portions; and/or at least one guide member positioned at at least one of the fixation points and configured to constrain a bend radius of the optical fiber.
Abstract:
There are described methods and systems for deploying optical fiber within a conduit. In one aspect, an optical fiber injector comprising a pressure vessel having a fluid inlet and a fluid outlet. The fluid outlet is engaged with an open end of the conduit. A length of optical fiber is provided within the pressure vessel. The optical fiber is then jetted into the conduit by injecting a fluid into the pressure vessel via the fluid inlet. The optical fiber injector is configured such that the fluid is directed from the fluid inlet to the fluid outlet, and urges the optical fiber to move through the conduit, thereby deploying the optical fiber within the conduit. In a further aspect, there is provided a modular assembly comprising a pipeline and a line of two or more conduits arranged end-to-end. Each pair of opposing ends of adjacent conduits is connected together by a separate splice box. The line is positioned along and adjacent to a length of the pipeline.
Abstract:
There are described methods, systems, and computer-readable media for detecting events in a conduit. A first length of optical fiber, positioned alongside the conduit, is interrogated to obtain interferometric data from the first length of optical fiber. A second length of optical fiber, positioned alongside the conduit, is interrogated to obtain interferometric data from the second length of optical fiber. The interferometric data obtained from the first length of optical fiber is compared with the interferometric data obtained with the second length of optical fiber. Based on the comparison, whether an event has occurred in the conduit is determined.
Abstract:
A device and system for detecting dynamic strain. The device comprises a longitudinally extending carrier and an optical fiber embedded along an outer surface of a length of the carrier. The optical fiber comprises at least one pair of fiber Bragg gratings (FBGs) tuned to reflect substantially identical wavelengths. The system comprises the device and an interrogator comprising a laser source and a photodetector. The interrogator is configured to perform interferometry by shining laser light along the optical fiber and detecting light reflected by the FBGs. The interrogator outputs dynamic strain measurements based on interferometry performed on the reflected light.
Abstract:
There is described a method of locating an area of interest in a conduit, comprising: measuring multiple acoustic signals at multiple locations along the conduit; for each acoustic signal, determining its autocorrelation; and applying a relationship to the determined autocorrelations to estimate a location of the area of interest, wherein the relationship is between autocorrelations of acoustic signals measured in a modelled conduit and modelled areas of interest in the modelled conduit, wherein it is assumed that acoustic signals propagating along the modelled conduit reflect from at least one point in the modelled conduit.