摘要:
In the present invention, a substrate is adjusted in temperature such that its contact portion held on a substrate holding unit and its outer peripheral portion outside the contact portion are at different temperatures. The temperature of the contact portion is adjusted such that the contact portion and the substrate holding unit are at the same temperature when the substrate is held on the substrate holding unit. The temperature-adjusted substrate is then held and rotated by the substrate holding unit, and a coating solution is applied onto the rotating substrate to form a coating film with a uniform film thickness, so that even if the number of times of coating treatment for substrates increases, the film thickness of the coating film to be formed on the substrate can be made uniform.
摘要:
The present invention includes: a first step of discharging a coating solution from a nozzle to a center portion of the substrate to apply the coating solution on a surface of the substrate while rotating the substrate; a second step of decelerating, after the first step, the rotation of the substrate and continuously rotating the substrate; and a third step of accelerating, after the second step, the rotation of the substrate to dry the coating solution on the substrate, wherein: the substrate is rotated at a fixed speed of a first speed immediately before the first step; and in the first step, the rotation of the substrate which is at the first speed before start of the first step is gradually accelerated after the start of the first step so as to make the speed continuously change, and the acceleration of the rotation of the substrate is gradually decreased so as to make the speed of the rotation of the substrate converge in a second speed higher than the first speed at end of the first step.
摘要:
The present invention supplies a solvent to the front surface of a substrate while rotating the substrate. Subsequently, the substrate is acceleratingly rotated to a first number of rotations, and a resist solution is supplied to a central portion of the substrate during the accelerating rotation and the rotation at the first number of rotations. Thereafter, the substrate is deceleratingly rotated to a second number of rotations, and after the number of rotations of the substrate reaches the second number of rotations, the resist solution is discharged to the substrate. The substrate is then acceleratingly rotated to a third number of rotations higher than the second number of rotations so that the substrate is rotated at the third number of rotations. According to the present invention, in application of the resist solution by spin coating, the consumption of the resist solution can be suppressed, and a high in-plane uniformity can be obtained for the film thickness of the resist film.
摘要:
Resist coating treatments for application of a resist solution to removal of a resist film on a wafer edge portion. A laser irradiation unit applies a laser light in a resist coating unit. At the time of resist coating treatment, the resist solution is discharged onto a central portion of the rotated wafer from a resist solution supply nozzle to form a resist film on the wafer. Thereafter, the laser irradiation unit moves to an outer peripheral portion of the wafer and applies the laser light onto the resist film on the outer peripheral portion to dry the resist film on the outer peripheral portion. The application of laser light is continued, and the solvent supply nozzle moves to a position above the edge portion and supplies solvent to the resist film on the edge portion. The solvent dissolves and removes the resist film on the edge portion.
摘要:
The present invention is a hardening processing apparatus for heating a substrate coated with a coating solution to harden the coating film on the substrate, which includes a first processing chamber for mounting the substrate coated with the coating solution on a heating plate and heating the substrate to a predetermined temperature on a one-by-one basis; a first irradiation unit provided in the first processing chamber, for irradiating the substrate mounted on the heating plate with ultraviolet light; and a second processing chamber connected in a communicating manner to the first processing chamber, for mounting the substrate coated with the coating solution on a temperature adjusting plate and adjusting the substrate to a temperature lower than a processing temperature of hardening processing on a one-by-one basis, in which the substrate is heated by the heating plate while being irradiated with the ultraviolet light by the first irradiation unit so that the coating film on the substrate is hardened. Accordingly, it is possible to harden the coating film at a lower temperature than that in the case of no irradiation of ultraviolet light so as to prevent occurrence of adverse effects due to heat to devices.
摘要:
To perform a series of resist coating treatments from application of a resist solution to removal of a resist film on a wafer edge portion in a shorter time.A laser irradiation unit for applying a laser light is provided in a resist coating unit. At the time of resist coating treatment, the resist solution is discharged onto a central portion of the rotated wafer from a resist solution supply nozzle to form a resist film on the wafer. Thereafter, the laser irradiation unit moves to an outer peripheral portion of the wafer and applies the laser light onto the resist film on the outer peripheral portion to dry the resist film on the outer peripheral portion. After the resist film on the outer peripheral portion dries, the application of laser light is continued, and the solvent supply nozzle moves to a position above the edge portion of the wafer and supplies the solvent to the resist film on the edge portion of the wafer. The supply of the solvent dissolves and removes the resist film on the edge portion of the wafer.
摘要:
Resist coating treatments for application of a resist solution to removal of a resist film on a wafer edge portion. A laser irradiation unit applies a laser light in a resist coating unit. At the time of resist coating treatment, the resist solution is discharged onto a central portion of the rotated wafer from a resist solution supply nozzle to form a resist film on the wafer. Thereafter, the laser irradiation unit moves to an outer peripheral portion of the wafer and applies the laser light onto the resist film on the outer peripheral portion to dry the resist film on the outer peripheral portion. The application of laser light is continued, and the solvent supply nozzle moves to a position above the edge portion and supplies solvent to the resist film on the edge portion. The solvent dissolves and removes the resist film on the edge portion.
摘要:
In the present invention, a plurality of solvent supply nozzles for solvents having different solubility parameters are provided in a coating treatment apparatus. For a solvent supply nozzle for use at the time of edge rinse, a solvent supply nozzle is selected that discharges a removal solvent having a solubility parameter different by a set value or more from that of a coating solvent contained in a coating solution. During coating treatment, the coating solution is discharged from a coating solution supply nozzle onto the central portion of a rotated substrate to form a solution film having a predetermined film thickness. Immediately after the formation, edge rinse is started with the coating solution on the substrate not dry yet, in which the removal solvent is supplied to the peripheral portion of the substrate from the selected solvent supply nozzle. In this event, the supplied removal solvent repels the coating solution on the substrate, so that only the coating solution on the peripheral portion is appropriately removed. According to the present invention, a series of coating treatments including the edge rinse can be carried out in a shorter time.
摘要:
In the present invention, a plurality of solvent supply nozzles for solvents having different solubility parameters are provided in a coating treatment apparatus. For a solvent supply nozzle for use at the time of edge rinse, a solvent supply nozzle is selected that discharges a removal solvent having a solubility parameter different by a set value or more from that of a coating solvent contained in a coating solution. During coating treatment, the coating solution is discharged from a coating solution supply nozzle onto the central portion of a rotated substrate to form a solution film having a predetermined film thickness. Immediately after the formation, edge rinse is started with the coating solution on the substrate not dry yet, in which the removal solvent is supplied to the peripheral portion of the substrate from the selected solvent supply nozzle. In this event, the supplied removal solvent repels the coating solution on the substrate, so that only the coating solution on the peripheral portion is appropriately removed. According to the present invention, a series of coating treatments including the edge rinse can be carried out in a shorter time.
摘要:
A laser irradiation unit for applying a laser light is provided in a resist coating unit. At the time of resist coating treatment, the resist solution is discharged onto a central portion of the rotated wafer from a resist solution supply nozzle to form a resist film on the wafer. Thereafter, the laser irradiation unit moves to an outer peripheral portion of the wafer and applies the laser light onto the resist film on the outer peripheral portion to dry the resist film on the outer peripheral portion. After the resist film on the outer peripheral portion dries, the application of laser light is continued, and the solvent supply nozzle moves to a position above the edge portion of the wafer and supplies the solvent to the resist film on the edge portion of the wafer. The supply of the solvent dissolves and removes the resist film on the edge portion of the wafer.