摘要:
An apparatus for controlling an extinction ratio of a light-emitting device, includes: a temperature detecting unit that detects a temperature of the device; a power detecting unit that detects an optical output power of the device; a modulation-current detecting unit that detects a modulation current input into the device; a POW computing unit that computes a power control value for the device based on the temperature; and an ER computing unit that computes an extinction ratio control value for the device based on the power control value, the optical output power, and the modulation current.
摘要:
An optical receiving device which is improved in the accuracy of optical input interruption detection as well as in the alarm response and thus is capable of high-quality detection of interruption of the optical input. A light receiving element receives an optical signal and converts it into an electrical signal. A bias control section stabilizes a bias voltage applied to the light receiving element against variations in temperature and power supply. An optical input interruption protection section protects the light receiving element using a protective voltage so that the light receiving element may not be broken due to an excessive rise of the bias voltage when the optical input is interrupted. An alarm issuing section monitors the photocurrent of the light receiving element and issues an alarm on detecting an interruption of the optical input when the bias voltage and the protective voltage become equal to each other.
摘要:
An optical receiving device which is improved in the accuracy of optical input interruption detection as well as in the alarm response and thus is capable of high-quality detection of interruption of the optical input. A light receiving element receives an optical signal and converts same into an electrical signal. A bias control section stabilizes a bias voltage applied to the light receiving element against variations in temperature and power supply. An optical input interruption protection section protects the light receiving element by means of a protective voltage so that the light receiving element may not be broken due to an excessive rise of the bias voltage when the optical input is interrupted. An alarm issuing section monitors the photocurrent of the light receiving element and issues an alarm on detecting an interruption of the optical input when the bias voltage and the protective voltage become equal to each other.
摘要:
Disclosed is a laser diode protecting circuit adapted to prevent a laser diode from producing an excessive emission when the laser diode is driven at low temperature, thereby assuring that the laser diode will not be damaged or degraded in terms of its characteristic. When the laser diode is started at low temperature, a laser diode protecting circuit has a power monitor circuit for monitoring backward power of the laser diode and a laser diode current limiting circuit for limiting the laser diode current when the backward power becomes equal to the set power. When the laser diode temperature subsequently rises and the backward power falls below the set power, an automatic current control circuit performs automatic current control in such a manner that the laser diode current attains a set current value. Alternatively, a temperature monitor circuit monitors the temperature of the laser diode and the laser diode current limiting circuit limits the laser diode current when the monitored temperature of the laser diode is less than the set temperature. When the laser diode temperature exceeds the set temperature, the automatic current control circuit performs automatic current control in such a manner that the laser diode attains the set current value.
摘要:
An optical signal receiver comprising an optical mixing/polarization splitting unit for producing IF optical signals having two orthogonally polarized components, an optical signal receiving unit for producing four corresponding IF electric signals, and a combining circuit for combining two IF electric signals having one polarization with the other two IF electric signals having the other polarization, suppressing fluctuation of the polarization and the intensity noise of the related local optical signal. The intensity noise suppression is also effective for IF electric signals having a higher frequency range.