Abstract:
Some demonstrative embodiments include devices, systems and methods of multi-user uplink transmission. For example, an apparatus may include a transmitter to transmit a multi-user (MU) downlink transmission to a plurality of wireless stations; a receiver to receive from the plurality of wireless stations a plurality of acknowledgement (ACK) frames, at least one ACK frame from at least one wireless station including an uplink scheduling request indicating uplink resources requested by the wireless station; and a scheduler to schedule an uplink transmission from the at least one wireless station based on the uplink scheduling request, the transmitter to transmit at least one scheduling frame including scheduling information of the scheduled uplink transmission.
Abstract:
Methods, devices and systems for jointly encoding allocation information of one or more wireless communication stations in a common portion of a physical layer header are disclosed. In some examples, a wireless device may: generate allocation information associated with one or more wireless communication stations; encode the allocation information into the common portion of the physical layer header; and transmit the physical layer header to the one or more wireless communication stations.
Abstract:
This disclosure describes methods, apparatus, and systems related to a high efficiency signal field encoding structure. A device may determine a communications channel having a bandwidth of a frequency band. The device may determine a first group of subchannels of the bandwidth and a second group of subchannels of the bandwidth. The device may determine a high efficiency signal field to be transmitted on the communications channel to a first device. The device may encode the high efficiency signal field using the first group of subchannels and the second group of subchannels. The device may cause to send the high efficiency signal field to the first device.
Abstract:
A transmitter/receiver pair may estimate a first channel interference caused during the spatial reuse phase by the transmitter/receiver pair to other transmitter/receiver pairs over a channel. A second channel interference experienced by the transmitter/receiver pair may be estimated during the spatial reuse phase by the transmitter/receiver pair from the other transmitter/receiver pairs. An interference margin may be estimated for the channel based on the first and second channel interferences. The interference margin may be announced to the other transmitter/receiver pairs in frame. The interference margin may then be complied with while communicating over the channel in order to control the interference.
Abstract:
Systems, apparatus, and methods to provide an indication of frequency resource unit (RU) allocation from a wireless access point (AP) to one or more station devices (STA) are disclosed. The AP may be configured to generate a protocol data unit including a high efficiency wireless (HEW) preamble that indicates the RU allocation corresponding to each of the STA. The indication of the RU allocation for each of the STA, as disclosed herein, may be encoded in fewer bits than providing a bitmap of the RU allocation for each of the STA. A predetermined RU pattern may be used to map RU (e.g., 26 tone units, 52 tone units, etc.) to a RU allocation index. This RU allocation pattern may be efficiently communicated to each of the STAs in the HEW preamble of the protocol data unit.
Abstract:
Apparatuses, methods, and computer readable media for signaling high efficiency short training field are disclosed. A high-efficiency wireless local-area network (HEW) station is disclosed. The HEW station may comprise circuitry configured to: receive a trigger frame comprising an allocation of a resource block for the HEW station, and transmit a high efficiency short training field (HE-STF) with a same bandwidth as a subsequent data portion, wherein the transmit is to be in accordance with orthogonal frequency division multiple access (OFDMA) and wherein the transmit is within the resource block. A subcarrier allocation for the HE-STF may match a subcarrier allocation for the subsequent data portion. The HE-STF and the subsequent data portion may be transmitted with a same power. A total power of active subcarriers of the HE-STF may be equal to or proportional to a second total of data subcarriers and pilot subcarriers of the subsequent data portion.
Abstract:
Apparatus, computer readable medium, and method for generating and receiving signal fields in a high efficiency wireless local-area network (WLAN) are disclosed. A high-efficiency wireless local-area network (HEW) device including circuitry is disclosed. The circuitry may be configured to: receive a physical (PHY) header or media access control (MAC) header from a second HEW station, wherein the PHY header or MAC header comprises an indication of a spatial reuse opportunity and a defer duration; adjust one or more parameters to determine whether or not the wireless medium is in use; and determine whether to transmit within the spatial reuse opportunity based on the adjusted one or more parameters. The circuitry may be configured to adjust one or more parameters to determine whether or not the wireless medium is in use in where the parameters are signal detect (SD) threshold, a mid-packet detection (MPD) threshold, and an energy detection (ED) threshold.
Abstract:
Embodiments described herein relate generally to a user equipment (“UE”) that is to transmit and receive signals associated with synchronization. The UE may be receive signals associated with synchronization from a plurality of synchronization sources, such as an evolved Node B (“eNB”), a global navigation satellite system (“GNSS”), or another UE. The UE may synchronize to a signal received from a synchronization source based on a priority associated with that synchronization source and/or signal. However, if the UE does not receive any signals associated with synchronization, the UE may generate and transmit a signal that indicates a request for synchronization.
Abstract:
Some demonstrative embodiments include devices, systems and methods of multi-user downlink transmission. For example, an apparatus may include a transmitter to transmit a multi-user (MU) downlink request to a plurality of wireless stations; and a receiver to receive one or more responses from one or more wireless stations of the plurality of wireless stations, wherein the transmitter is to transmit to the plurality of wireless stations a MU scheduling message indicating resources allocated to a downlink transmission to at least one scheduled station of the one or more wireless stations, and to transmit the downlink transmission to the at least one scheduled station according to the MU scheduling message.
Abstract:
Some wireless communications environments, such as Wi-Fi, may include inexpensive power amplifiers where the power adjustment may not be accurate, and may also include pathloss measurement errors that are high enough to degrade performance of a power control algorithm. To address this issue, an exemplary aspect is directed toward a finite state power control algorithm and technique that, while designed for next generation Wi-Fi standards, such as 802.11ax, can in general be used with any wireless communication protocol or standard.