Abstract:
A method, a computer system, and a computer program product for mapping operational records to a topology graph. Embodiments of the present invention may include generating an event frequent pattern using operational records. Embodiments of the present invention may include integrating topology-based event frequent patterns. Embodiments of the present invention may include mapping the operational records with an embedding engine. Embodiments of the present invention may include predicting incident events. Embodiments of the present invention may include receiving labeled patterns to the embedding engine for an active learning cycle.
Abstract:
A method, a computer system, and a computer program product for a shiftleft topology construction is provided. Embodiments of the present invention may include collecting datasets. Embodiments of the present invention may include extracting topological entities from the datasets. Embodiments of the present invention may include correlating a plurality of data from the topological entities. Embodiments of the present invention may include mapping the topological entities. Embodiments of the present invention may include marking entry points for a plurality of subgraphs of the topological entities. Embodiments of the present invention may include constructing a topology graph.
Abstract:
A computer implemented method for identifying an application topology includes identifying a sandbox environment corresponding to an application of interest, analyzing the sandbox environment to identify a set of communication links between services within the sandbox environment indicating a first topology, identifying a production system corresponding to the application of interest, querying the production system to identify a set of structural dependencies indicating a second topology, and creating a complete topology of the cloud application by combining the first topology and the second topology. A computer program product and computer system for identifying an application topology are additionally disclosed herein.
Abstract:
A system, computer program product, and method are provided for orchestrating a multi objective optimization of an application. A set of two or more key performance indicators (KPIs) and one or more parameters associated with the application are received. A machine learning (ML) based surrogate function learning model in combination with an acquisition function is leveraged to conduct one or more adaptive trials. Each trial consists of a specific configuration of the one or more parameters. A pareto surface of the KPIs of the application is computed based on the observations of KPI values from each adaptive trial. The pareto surface is explored and an optimal operating point is selected for the application. The application is then executed at the selected operating point.
Abstract:
An encoding system for encoding an event time series, the system including an inter-arrival time computing device configured to transform inter-arrival times between a plurality of input events into discrete time symbols and map the input events and the discrete time symbols using a dictionary to output a time gram representing a temporal dimension between a sequences of events.
Abstract:
A method and system of optimizing parameters of a microservice-based application is provided. A microservice infrastructure of the microservice-based application is determined. One or more optimization objectives related to the microservice-based application are determined. Different combinations of timeout and retry values are tested for each microservice. A reward value is calculated for each of the different combinations of timeout and retry values. The microservice infrastructure is set to a combination of timeout and retry values having a highest reward value for the one or more optimization objectives.
Abstract:
Embodiments relate to analyzing dataset. A method of analyzing data is provided. The method obtains a description of a dataset. The method automatically generates a plurality of analysis options from the description of the dataset. The method generates a plurality of queries based on the analysis options. The method deploys the queries on the dataset to build a plurality of statistical models from the dataset.
Abstract:
A method, system, and computer program product derive data schema for application to a data set. One or more processors generate a directed acyclic weighted graph that encodes data types and semantic types used by a data set. One or more processors assign estimated frequencies for each component of the directed acyclic weighted graph, where the estimated frequencies predict a likelihood of a particular data schema element being used by any data set. One or more processors traverse through paths in the directed acyclic weighted graph with a predetermined portion of the data set to determine a data schema that correctly defines data from the data set and identifies any errors in the data set, and then apply the data schema to the data set to generate clean data that is properly formatted.
Abstract:
A method, system, and computer program product derive data schema for application to a data set. One or more processors generate a directed acyclic weighted graph that encodes data types and semantic types used by a data set. One or more processors assign estimated frequencies for each component of the directed acyclic weighted graph, where the estimated frequencies predict a likelihood of a particular data schema element being used by any data set. One or more processors traverse through paths in the directed acyclic weighted graph with a predetermined portion of the data set to determine a data schema that correctly defines data from the data set and identifies any errors in the data set, and then apply the data schema to the data set to generate clean data that is properly formatted.
Abstract:
The present invention describes a method and system for optimizing a test flow within each ATE (Automated Test Equipment) station. The test flow includes a plurality of test blocks. A test block includes a plurality of individual tests. A computing system schedule the test flow based one or more of: a test failure model, test block duration and a yield model. The failure model determines an order or sequence of the test blocks. There are at least two failure models: independent failure model and dependant failure model. The yield model describes whether a semiconductor chip is defective or not. Upon completing the scheduling, the ATE station conducts tests according to the scheduled test flow. The present invention can also be applied to software testing.