Abstract:
A system and method for registration and coordinated manipulation of augmented reality image components includes registering a model of patient anatomy to a first image of the patient anatomy captured using an imaging device to determine a baseline relationship between the model and the first image, tracking movement of a computer-assisted device used to manipulate the imaging device, updating the baseline relationship based on the tracked movement, and generating a composite image by overlaying the model on a second image of the patient anatomy according to the updated relationship. In some embodiments, the model is semi-transparent. In some embodiments, registering the model to the first image includes adjusting the model relative to the first image based on one or more inputs received from a user and generating a model to image transformation based on the adjustments to the model. The model to image transformation captures the baseline relationship.
Abstract:
In a method and an apparatus to provide updated images during a robotically-implemented surgical procedure, 3D data is obtained of a volume of a patient, which includes anatomy involved in the procedure. The anatomy is segmented from a reconstructed image of the volume. During the procedure, the surgeon applies forces on the anatomy, causing a geometric change of the anatomy. Force sensors in the surgical robot detect these forces, which are supplied to a processor that controls display of the segmented anatomy at a display screen. From the applied forces and the physical properties of the anatomy, the processor calculates the geometric change of the anatomy that has occurred and modifies the appearance and/or position of the displayed segmented anatomy on the display screen in real time during the procedure, so as to visualize the geometric change.
Abstract:
A system and method for an articulated arm stabilization includes an arm stabilizer for use with articulated arms of a computer-assisted medical device. The stabilizer includes a spine, a first vibration absorbing mount attached to the spine, a second vibration absorbing mount attached to the spine, a first clamp attached to the first vibration absorbing mount, and a second clamp attached to the second vibration absorbing mount. The first clamp is adapted to hold a first attachment point of a first articulated arm without slipping. The second clamp is adapted to hold a second attachment point of a second articulated arm without slipping. In some embodiments, the arm stabilizer stabilizes and reduces vibration in the first and second articulated arms. In some embodiments, the vibration is in a range from 0.5 to 14 Hz. In some embodiments, the spine limits relative motion between the first clamp and the second clamp.
Abstract:
A system and method of logging and replay among heterogeneous devices includes one or more shared services including a replay service, a processor for executing the shared services, and a shared interface for providing access to the shared services. The replay service selects one or more logs for playback, emulates one or more playback devices, each of the playback devices being associated with a respective one of the logs, extracts one or more log entries from each of the logs, recreates one or more recreated service requests for the one or more shared services based on information associated with each of the log entries, and initiates the recreated service requests. In some embodiments, the system and method further include a logging service to create new log entries based on new service requests, associate the new log entries with a corresponding timestamp, and record the new log entries.
Abstract:
A system and method of coordinated motion among heterogeneous devices includes a medical device with one or more movable elements and one or more processors. Any of the processors uses a shared interface to access services. The medical device requests a movement token from a token service through the shared interface, receive the movement token from the token service, exchange configuration data, kinematic data, or planned motion data through the shared interface, plan a first motion for a first movable element of the movable elements based on the movement token and the configuration data, the kinematic data, or the planned motion data, and execute the first motion. In some embodiments, the movement token is selected from a group consisting of an exclusive-motion token, a master follow-me token, a slave follow-me token, a master collision-avoidance token, a slave collision-avoidance token, and a passive collision-avoidance token.
Abstract:
An exemplary system accesses imagery of a surgical space captured by different imaging modalities and, based on the accessed imagery, generates composite imagery that includes integrated representations of the surgical space as captured by the different imaging modalities. An exemplary composite image includes a representation of the surgical space as captured by a first imaging modality augmented with an integrated representation of the surgical space as captured by a second imaging modality. The integrated representation of the surgical space as captured by the second imaging modality may be selectively movable and may be generated based on first imagery of the surgical space captured by the first imaging modality and second imagery of the surgical space captured by the second imaging modality in a manner that provides a visually realistic appearance of depth.
Abstract:
A method is provided for intra-surgical use of a surgical patient health record in a teleoperated surgical system that includes a surgical instrument and a surgical instrument actuator, comprising: receiving user input commands to control movement of a robotic surgical instrument; tracking robotic surgical instrument actuator state in response to the user input commands; and transitioning robotic surgical instrument actuator state to a safety mode in response to the robotic surgical instrument transitioning to a prescribed actuator state.
Abstract:
An illustrative image processing system is configured to apply. as an input to a processing module. a first video stream generated by an imaging device during a medical procedure. The processing module is configured to generate. based on the input. output data used to perform an image-based operation associated with the medical procedure. The image processing system is further configured to detect, while the first video stream is being applied to the processing module. a deficiency associated with the first video stream and apply. as the input to the processing module and based on the detecting of the deficiency. a second video stream generated by the imaging device during the medical procedure.
Abstract:
A method comprises obtaining an endoscopic image dataset of a patient anatomy from an endoscopic imaging system and retrieving an anatomic model dataset of the patient anatomy obtained by an anatomic imaging system. The method also comprises mapping the endoscopic image dataset to the anatomic model dataset and displaying a first vantage point image using the mapped endoscopic image dataset. The first vantage point image is presented from a first vantage point at a distal end of the endoscopic imaging system. The method also comprises displaying a second vantage point image using at least a portion of the mapped endoscopic image dataset. The second vantage point image is presented from a second vantage point, different from the first vantage point.
Abstract:
A system and method includes deploying first and second articulated arms of a computer-assisted device so that a first attachment point on the first articulated arm and a second attachment point of the second articulated arm are positioned and oriented relative to each other based on a size and a shape of an arm stabilizer; stabilizing and reducing vibration of the first and second articulated arms by attaching the arm stabilizer to the first and second attachment points; after the stabilizing and reducing vibration of the first and second articulated arms, positioning and orienting a tool with the first articulated arm; and after the positioning and orienting of the tool, operating the tool. In some embodiments, the tool is a medical tool. In some embodiments, the system and method further include positioning and orienting a second tool with the second articulated arm and operating the second tool.